Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1536-1547.doi: 10.19799/j.cnki.2095-4239.2024.0973
• Energy Storage System and Engineering • Previous Articles Next Articles
Xiaoyue LIU1(), Yan CHEN1, Xiaofei SUN2(
)
Received:
2024-10-16
Revised:
2024-11-28
Online:
2025-04-28
Published:
2025-05-20
Contact:
Xiaofei SUN
E-mail:1029119721@qq.com;424007648@qq.com
CLC Number:
Xiaoyue LIU, Yan CHEN, Xiaofei SUN. The flywheel array participates in a two-layer control strategy for primary frequency modulation of the power grid[J]. Energy Storage Science and Technology, 2025, 14(4): 1536-1547.
1 | HERAS J, MARTÍN M. Social issues in the energy transition: Effect on the design of the new power system[J]. Applied Energy, 2020, 278: 115654. DOI: 10.1016/j.apenergy.2020.115654. |
2 | 刘瀚琛, 王冲, 鞠平. 双碳背景下综合能源电力系统弹性分析与提升研究综述[J]. 电气工程学报, 2023, 18(2): 108-124. DOI: 10.11985/2023.02.011. |
LIU H C, WANG C, JU P. Review on resilience analysis and enhancement of integrated energy power systems considering dual carbon goal[J]. Journal of Electrical Engineering, 2023, 18(2): 108-124. DOI: 10.11985/2023.02.011. | |
3 | 孙华东, 王一鸣, 高磊, 等. 高比例电力电子电力系统稳定性的统一性判据研究(一): 场站稳定判据[J]. 中国电机工程学报, 2022, 42(5): 1713-1724. DOI: 10.13334/j.0258-8013.pcsee.210487. |
SUN H D, WANG Y M, GAO L, et al. Research on unification stability criterion for the power electronics dominated power system(Ⅰ): Criterion of the power-electronic interfaced plant[J]. Proceedings of the CSEE, 2022, 42(5): 1713-1724. DOI: 10.13334/j.0258-8013.pcsee.210487. | |
4 | JONES C R, HILPERT P, GAEDE J, et al. Batteries, compressed air, flywheels, or pumped hydro?Exploring public attitudes towards grid-scale energy storage technologies in Canada and the United Kingdom[J]. Energy Research & Social Science, 2021, 80: 102228. DOI: 10.1016/j.erss.2021.102228. |
5 | 李怡, 李永丽, 李松, 等. 基于VSG的光伏及混合储能系统功率分配与虚拟惯性控制[J]. 电力自动化设备, 2023, 43(7): 27-34. DOI: 10.16081/j.epae.202212003. |
LI Y, LI Y L, LI S, et al. Power distribution and virtual inertia control of photovoltaic and hybrid energy storage system based on VSG[J]. Electric Power Automation Equipment, 2023, 43(7): 27-34. DOI: 10.16081/j.epae.202212003. | |
6 | 洪烽, 梁璐, 逄亚蕾, 等. 基于机组实时出力增量预测的火电-飞轮储能系统协同调频控制研究[J]. 中国电机工程学报, 2023, 43(21): 8366-8378. DOI: 10.13334/j.0258-8013.pcsee.222304. |
HONG F, LIANG L, PANG Y L, et al. Research on coordinated frequency control of thermal power-flywheel energy storage system based on the real-time prediction of output increment[J]. Proceedings of the CSEE, 2023, 43(21): 8366-8378. DOI: 10.13334/j.0258-8013.pcsee.222304. | |
7 | 杨易茗. 基于自适应系数的双馈风电机组调频控制策略及参数优化[J]. 电气应用, 2024, 43(5): 40-49. |
YANG Y M. Parameter economic optimization based on variable coefficient frequency modulation control strategy of double-fed wind turbine[J]. Electrotechnical Application, 2024, 43(5): 40-49. | |
8 | PANDŽIĆ H, BOBANAC V. An accurate charging model of battery energy storage[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1416-1426. DOI: 10.1109/TPWRS.2018.2876466. |
9 | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. |
HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239. 2021.0283. | |
10 | 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. DOI: 10.19595/j.cnki.1000-6753.tces.181061. |
LI X R, CUI X W, HUANG J Y, et al. The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. DOI: 10.19595/j.cnki.1000-6753.tces.181061. | |
11 | 洪烽, 梁璐, 逄亚蕾, 等. 基于自适应协同下垂的飞轮储能联合火电机组一次调频控制策略[J]. 热力发电, 2023, 52(1): 36-44. DOI: 10.19666/j.rlfd.202206100. |
HONG F, LIANG L, PANG Y L, et al. Primary frequency regulation of flywheel energy storage combined thermal power unit based on adaptive coordinated droop control[J]. Thermal Power Generation, 2023, 52(1): 36-44. DOI: 10.19666/j.rlfd. 202206100. | |
12 | 杨永辉, 谢丽蓉, 李佳明, 等. 基于模糊控制的储能参与一次调频综合控制策略[J]. 智慧电力, 2023, 51(4): 38-45. DOI: 10.3969/j.issn.1673-7598.2023.04.006. |
YANG Y H, XIE L R, LI J M, et al. Integrated control strategy of energy storage participating in primary frequency regulation based on fuzzy control[J]. Smart Power, 2023, 51(4): 38-45. DOI: 10.3969/j.issn.1673-7598.2023.04.006. | |
13 | 刘英培, 田仕杰, 梁海平, 等. 考虑SOC的电池储能系统一次调频策略研究[J]. 电力系统保护与控制, 2022, 50(13): 107-118. DOI: 10.19783/j.cnki.pspc.211530. |
LIU Y P, TIAN S J, LIANG H P, et al. Control strategy of a battery energy storage system considering SOC in primary frequency regulation of power grid[J]. Power System Protection and Control, 2022, 50(13): 107-118. DOI: 10.19783/j.cnki.pspc. 211530. | |
14 | 梁海平, 孙通, 郑钟鹤, 等. 考虑SOC自恢复的飞轮储能一次调频自适应控制策略[J/OL]. 华北电力大学学报(自然科学版), 1-9. http://kns.cnki.net/kcms/detail/13.1212.tm.20240716.1034.006.html. |
LIANG H P, SUN T, ZHENG Z H, et al. Adaptive control strategy for flywheel energy storage with frequency regulation considering SOC self recovery[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 1-9. http://kns.cnki.net/kcms/detail/13.1212.tm.20240716.1034.006.html. | |
15 | LIU H M, GAO H L, GUO S P, et al. Coordination of a flywheel energy storage matrix system: An external model approach[J]. IEEE Access, 2021, 9: 34475-34486. DOI: 10.1109/ACCESS. 2021.3061743. |
16 | 陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. DOI: 10.19799/j.cnki.2095-4239.2021.0421. |
CHEN Y L, WU X, TENG W, et al. Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. DOI: 10.19799/j.cnki.2095-4239.2021.0421. | |
17 | CAI H. Power tracking and state-of-energy balancing of an energy storage system by distributed control[J]. IEEE Access, 2020, 8: 170261-170270. DOI: 10.1109/ACCESS.2020.3024714. |
18 | 曾德良, 刘吉臻. 汽包锅炉的动态模型结构与负荷/压力增量预测模型[J]. 中国电机工程学报, 2000, 20(12): 75-79. DOI: 10.13334/j.0258-8013.pcsee.2000.12.017. |
ZENG D L, LIU J Z. Drum boiler dynamic model and load/pressure increment predict model[J]. Proceedings of the CSEE, 2000, 20(12): 75-79. DOI: 10.13334/j.0258-8013.pcsee. 2000.12.017. | |
19 | 曾德良, 高耀岿, 胡勇, 等. 基于阶梯式广义预测控制的汽包炉机组协调系统优化控制[J]. 中国电机工程学报, 2019, 39(16): 4819-4826, 4983. DOI: 10.13334/j.0258-8013.pcsee.180584. |
ZENG D L, GAO Y K, HU Y, et al. Optimized control of the drum boiler power plant's coordination system based on stair-like generalized predictive control[J]. Proceedings of the CSEE, 2019, 39(16): 4819-4826, 4983. DOI: 10.13334/j.0258-8013.pcsee.180584. | |
20 | 田云峰, 郭嘉阳, 刘永奇, 等. 用于电网稳定性计算的再热凝汽式汽轮机数学模型[J]. 电网技术, 2007, 31(5): 39-44. DOI: 10.3321/j.issn: 1000-3673.2007.05.009. |
TIAN Y F, GUO J Y, LIU Y Q, et al. A mathematical model of rehear turbine for power grid stability calculation[J]. Power System Technology, 2007, 31(5): 39-44. DOI: 10.3321/j.issn: 1000-3673.2007.05.009. | |
21 | 吴启帆, 宋新立, 张静冉, 等. 电池储能参与电网一次调频的自适应综合控制策略研究[J]. 电网技术, 2020, 44(10): 3829-3836. DOI: 10.13335/j.1000-3673.pst.2019.1214. |
WU Q F, SONG X L, ZHANG J R, et al. Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid[J]. Power System Technology, 2020, 44(10): 3829-3836. DOI: 10.13335/j.1000-3673.pst. 2019. 1214. | |
22 | 朱志莹, 张巍, 朱海浪, 等. 轴向永磁磁悬浮飞轮电机损耗计算与温度场分析[J]. 电气工程学报, 2022, 17(4): 174-180. DOI: 10.11985/2022.04.017. |
ZHU Z Y, ZHANG W, ZHU H L, et al. Analysis of loss and temperature field of axial permanent magnet magnetic bearingless flywheel machine[J]. Journal of Electrical Engineering, 2022, 17(4): 174-180. DOI: 10.11985/2022.04.017. | |
23 | 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053. |
MU C H, WU P Y, SUN G H, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system[J]. Thermal Power Generation, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053. | |
24 | 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19): 63-72. DOI: 10.7500/AEPS20200320002. |
LI J H, HOU T, MU G, et al. Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19): 63-72. DOI: 10.7500/AEPS20200320002. | |
25 | 韩旭, 刘仲稳, 王小东, 等. 飞轮储能辅助火电机组一次调频及其性能评价[J]. 太阳能学报, 2024, 45(7): 163-171. DOI: 10.19912/j.0254-0096.tynxb.2023-0435. |
HAN X, LIU Z W, WANG X D, et al. Flywheel energy storage assists thermal power unit frequency regulation simulation[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 163-171. DOI: 10.19912/j.0254-0096.tynxb.2023-0435. |
[1] | Wenqi DONG, Donghui ZHANG, Yifan CAO, Zhaoxuan NING, Xinjian JIANG, Ming LI, Xuewei SHI. The control strategies concerning the new type inertia flywheel and high-speed flywheel involved in the grid inertia response and primary frequency modulation [J]. Energy Storage Science and Technology, 2025, 14(3): 1224-1233. |
[2] | Zhiguo ZHANG, Gang WANG, Jing YANG, Shuping WANG, Dong LIU, Wufeng RAO. Research on the application of MW-level flywheel array for primary frequency regulation in wind farms [J]. Energy Storage Science and Technology, 2024, 13(10): 3569-3578. |
[3] | Zhan LI, Lei LIU, Zhenyong YANG, Yong SHANG, Mo YO, Aiguo GAO, Jingqiu KANG. Flywheel energy storage-thermal power mutual aid primary frequency modulation analysis based on process decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2854-2861. |
[4] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
[5] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
[6] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[7] | Lina WANG, Liping TAN, Zhiqiang XU, Xin TAN, Changlong WU, Hui YE, Aikui LI. Lithium battery energy storage power station primary frequency modulation design optimization and verification [J]. Energy Storage Science and Technology, 2022, 11(12): 3862-3871. |
[8] | Shiqiang LIAO, Xinyan ZHANG, Shasha LIU, Guanghao ZHANG, Lixiang HUANG, Rui SHI. Model-free adaptive control strategy for primary frequency modulation of energy storage battery [J]. Energy Storage Science and Technology, 2022, 11(10): 3221-3230. |
[9] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[10] | Guoxian GONG, Jingliang LV, Xinjian JIANG, Xudong SUN. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation [J]. Energy Storage Science and Technology, 2020, 9(6): 1878-1884. |
[11] | LIU Ping, LI Shusheng, LI Guangjun, DAI Xingjian. Experimental research on DC power recycling system in the subway based on the magnetically suspended energy-storaged flywheel array [J]. Energy Storage Science and Technology, 2020, 9(3): 910-917. |
[12] | TANG Xisheng, LIU Wenjun, ZHOU Long, QI Zhiping. Flywheel array energy storage system [J]. Energy Storage Science and Technology, 2013, 2(3): 208-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||