Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3221-3230.doi: 10.19799/j.cnki.2095-4239.2022.0269
• Energy Storage System and Engineering • Previous Articles Next Articles
Shiqiang LIAO1(), Xinyan ZHANG1,2(), Shasha LIU1, Guanghao ZHANG1, Lixiang HUANG1, Rui SHI1
Received:
2022-05-19
Revised:
2022-05-27
Online:
2022-10-05
Published:
2022-10-10
Contact:
Xinyan ZHANG
E-mail:1523026955@qq.com;xjcxzxy@126.com
CLC Number:
Shiqiang LIAO, Xinyan ZHANG, Shasha LIU, Guanghao ZHANG, Lixiang HUANG, Rui SHI. Model-free adaptive control strategy for primary frequency modulation of energy storage battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3221-3230.
1 | 李军徽, 侯涛, 穆钢, 等. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36(9): 1791-1804. |
LI J H, HOU T, MU G, et al. Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1791-1804. | |
2 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. | |
3 | ZHUO Z Y, ZHANG N, YANG J W, et al. Transmission expansion planning test system for AC/DC hybrid grid with high variable renewable energy penetration[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2597-2608. |
4 | 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606. |
SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. | |
5 | 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716. |
LIU Z C, PENG D G, ZHAO H R, et al. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal[J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. | |
6 | 裴哲义, 范高锋, 秦晓辉. 我国电力系统对大规模储能的需求分析[J]. 储能科学与技术, 2020, 9(5): 1562-1565. |
PEI Z Y, FAN G F, QIN X H. Demand analysis of large scale energy storage in China's power system[J]. Energy Storage Science and Technology, 2020, 9(5): 1562-1565. | |
7 | 陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
CHEN Y L, WU X, TENG W, et al. Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. | |
8 | TUSHAR W, YUEN C, SAHA T K, et al. Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges[J]. Applied Energy, 2021, 282: doi:10.1016/j.apenergy.2020.116131. |
9 | 张巍, 缪辉. 基于云储能租赁服务的风储参与能量-调频市场竞价策略研究[J]. 电网技术, 2021, 45(10): 3840-3852. |
ZHANG W, MIAO H. Bidding strategies of wind power and energy storage participating in energy and frequency regulation market based on cloud energy storage leasing services[J]. Power System Technology, 2021, 45(10): 3840-3852. | |
10 | TURK A, SANDELIC M, NOTO G, et al. Primary frequency regulation supported by battery storage systems in power system dominated by renewable energy sources[J]. The Journal of Engineering, 2019, 2019(18): 4986-4990. |
11 | MENG L X, ZAFAR J, KHADEM S K, et al. Fast frequency response from energy storage systems-A review of grid standards, projects and technical issues[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1566-1581. |
12 | 韩健民, 薛飞宇, 梁双印, 等. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
HAN J M, XUE F Y, LIANG S Y, et al. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization[J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. | |
13 | 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464. |
HUANG J Y, LI X R, CAO Y J, et al. Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464. | |
14 | 李欣然, 黄际元, 李培强, 等. 考虑电池储能仿真模型的一次调频特性评估[J]. 高电压技术, 2015, 41(7): 2135-2141. |
LI X R, HUANG J Y, LI P Q, et al. Performance evaluation of primary frequency regulation considering battery energy storage model[J]. High Voltage Engineering, 2015, 41(7): 2135-2141. | |
15 | 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19): 63-72. |
LI J H, HOU T, MU G, et al. Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19): 63-72. | |
16 | 贺鸿杰, 张宁, 杜尔顺, 等. 电网侧大规模电化学储能运行效率及寿命衰减建模方法综述[J]. 电力系统自动化, 2020, 44(12): 193-207. |
HE H J, ZHANG N, DU E S, et al. Review on modeling method for operation efficiency and lifespan decay of large-scale electrochemical energy storage on power grid side[J]. Automation of Electric Power Systems, 2020, 44(12): 193-207. | |
17 | 严干贵,王铭岐,段双明,张薇,李军徽,蔡长兴.基于储能调频系数和荷电状态恢复的储能一次调频控制策略[J/OL].电力系统自动化.(2022-05-12)[2022-05-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DLXT20220512000&uniplatform=NZKPT&v=JjENo4CVsXBJFuzrd6hevDa4r2FluT800RyfsBSXuengZ64PO1UWcer3ufhfndA5 |
YAN Gangui, WANG Mingqi, DUAN Shuangming.et al. Primary frequency regulation control strategy of energy storage based on frequency regulation coefficient and state of charge recovery[J/OL]. Automation of Electric Power Systems. (2022-05-12)[2022-05-28]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DLXT20220512000&uniplatform=NZKPT&v=JjENo4CVsXBJFuzrd6hevDa4r2FluT800RyfsBSXuengZ64PO1UWcer3ufhfndA5 | |
18 | 孙丙香, 李旸熙, 龚敏明, 等. 参与AGC辅助服务的锂离子电池储能系统经济性研究[J]. 电工技术学报, 2020, 35(19): 4048-4061. |
SUN B X, LI Y X, GONG M M, et al. Study on the economy of energy storage system with lithium-ion battery participating in AGC auxiliary service[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4048-4061. | |
19 | ZHU D W, ZHANG Y J A. Optimal coordinated control of multiple battery energy storage systems for primary frequency regulation[J]. IEEE Transactions on Power Systems, 2019, 34(1): 555-565. |
20 | 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165. |
DENG X, SUN W, XIAO H W. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165. | |
21 | 侯忠生, 金尚泰. 无模型自适应控制: 理论与应用[M]. 北京: 科学出版社, 2013. |
HOU Z S, JIN S T. Model-free adaptive control: Theory and application [M]. Beijing: Science Press, 2013. | |
22 | 鲁效平, 李伟, 林勇刚. 基于无模型自适应控制器的风力发电机载荷控制[J]. 农业机械学报, 2011, 42(2): 109-114, 129. |
LU X P, LI W, LIN Y G. Load control of wind turbine based on model-free adaptive controller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 109-114, 129. | |
23 | CHI R H, HOU Z S. A model-free periodic adaptive control for freeway traffic density via ramp metering[J]. 自动化学报, 2010, 36(7): 1029-1032. |
CHI R H, HOU Z S. A model-free periodic adaptive control for freeway traffic density via ramp metering[J]. Acta Automatica Sinica, 2010, 36(7): 1029-1032. | |
24 | 侯忠生, 董航瑞, 金尚泰. 基于坐标补偿的自动泊车系统无模型自适应控制[J]. 自动化学报, 2015, 41(4): 823-831. |
HOU Z S, DONG H R, JIN S T. Model-free adaptive control with coordinates compensation for automatic car parking systems[J]. Acta Automatica Sinica, 2015, 41(4): 823-831. | |
25 | 葛乐. 清洁能源定制电能并网控制关键技术研究[D]. 南京: 南京航空航天大学, 2016. |
GE (L /Y). Research on grid-connected control technology for custom power of clean energy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
26 | 米阳, 伦雪莹, 孟凡斌, 等. 基于无模型算法和电动汽车辅助调节的新能源电力系统频率协调控制[J]. 电力系统保护与控制, 2021, 49(24): 13-20. |
MI Y, LUN X Y, MENG F B, et al. Frequency coordinated control of a new energy power system based on a model-free algorithm and EV auxiliary regulation[J]. Power System Protection and Control, 2021, 49(24): 13-20. | |
27 | KUNDUR P. Power system stability and control[M]. New York: McGraw-Hill. |
28 | 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97, 16. |
HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97, 16. | |
29 | 黄际元, 李欣然, 曹一家, 等. 面向电网调频应用的电池储能电源仿真模型[J]. 电力系统自动化, 2015, 39(18): 20-24, 74. |
HUANG J Y, LI X R, CAO Y J, et al. Battery energy storage power supply simulation model for power grid frequency regulation[J]. Automation of Electric Power Systems, 2015, 39(18): 20-24, 74. | |
30 | 李欣然, 邓涛, 黄际元, 等. 储能电池参与电网快速调频的自适应控制策略[J]. 高电压技术, 2017, 43(7): 2362-2369. |
LI X R, DENG T, HUANG J Y, et al. Battery energy storage systemsê self-adaptation control strategy in fast frequency regulation[J]. High Voltage Engineering, 2017, 43(7): 2362-2369. |
[1] | Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. |
[2] | Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. |
[3] | Zhizhang YUAN, Zonghao LIU, Xianfeng LI. Research progress of flow battery technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. |
[4] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[5] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[6] | Xiangjun LI, Yibiao GUAN, Juan HU, Xiaokang LAI. Review of energy storage application in China from 2012 to 2022 [J]. Energy Storage Science and Technology, 2022, 11(9): 2702-2712. |
[7] | Jinzhi WANG, Xiaolei HAN, Chaofeng XU, Jingwen ZHAO, Yue TANG, Guanglei CUI. Research progress of sodium energy storage batteries using oxide solid-state electrolytes [J]. Energy Storage Science and Technology, 2022, 11(9): 2834-2846. |
[8] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[9] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[10] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[11] | Congjia ZHANG, Minda SHI, Chen XU, Zhenyu HUANG, Song CI. Intrinsic safety mechanism and case analysis of energy storage systems based on dynamically reconfigurable battery network [J]. Energy Storage Science and Technology, 2022, 11(8): 2442-2451. |
[12] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[13] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[14] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[15] | Kangyong YIN, Fengbo TAO, Wei LIANG, Zhiyuan NIU. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station [J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||