Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (1): 12-23.doi: 10.3969/j.issn.2095-4239.2013.01.002
• Invited papers • Previous Articles Next Articles
YANG Jun
Received:
2012-11-21
Online:
2013-02-19
Published:
2013-02-19
CLC Number:
YANG Jun. Research progress on composite nanomaterials of semiconductor and noble metals[J]. Energy Storage Science and Technology, 2013, 2(1): 12-23.
[1] Steckel J S,Snee P,Coe-Sullivan S,et al. Color-saturated green-emitting QD-LEDs[J]. Angewandte Chemie International Edition ,2006,45:5796-5799. [2] Caruge J M,Halpert J E,Wood V,et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics ,2008,2:247-250. [3] Huynh W U,Dittmer J J,Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science ,2002,295:2425-2427. [4] Gur L,Fromer N A,Geier M L,et al. Air-stable all-inorganic nanocrystal solar cells processed from solution[J]. Science ,2005,310:462-465. [5] Bruchez M,Moronne M,Gin P,et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science ,1998,281:2013-2016. [6] Chan W C W,Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science ,1998,281:2016-2018. [7] Mattoussi H,Mauro J M,Goldman E R,et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J]. Journal of the American Chemical Society ,2000,122:12142-12150. [8] Alivisatos A P. The use of nanocrystals in biological detection[J]. Nature Biotechnology ,2004,22:47-52. [9] Bäumle M,Stamou D,Segura J M,et al. Highly fluorescent streptavidin-coated CdSe nanoparticles:Preparation in water,characterization,and micropatterning[J]. Langmuir ,2004,20:3828-3831. [10] Zheng Y,Yang Z,Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn 1 - x Cd x Se alloyed quantum dots[J]. Advanced Materials ,2007,19:1475-1479. [11] Murray C B,Norris D J,Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur,selenium,tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society ,1993,115:8706-8715. [12] Peng X,Manna L,Yang W,et al. Shape control of CdSe nanocrystals[J]. Nature ,2000,404:59-61. [13] Peng Z A,Peng X. Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society ,2001,123:183-184. [14] Li J J,Wang Y A,Guo W,et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core-shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society ,2003,125:12567-12575. [15] Jasieniak J,Bullen C,van Embden J,et al. Phosphine-free synthesis of CdSe nanocrystals[J]. The Journal of Physical Chemistry B ,2005,109:20665-20668. [16] Sapra S,Rogach A L,Feldmann J. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil[J]. Journal of Materials Chemistry ,2006,16:3391-3395. [17] Deng Z,Gao L,Tang F,et al. A new route to zinc-blende CdSe nanocrystals:Mechanism and synthesis[J]. The Journal of Physical Chemistry B,2005,109:16671-16675. [18] Wei Y,Yang J,Lin A W H,et al. Highly reactive Se precursor for the phosphine-free synthesis of metal selenide nanocrystals[J]. Chemistry of Materials ,2010,22:5672-5677. [19] Peng X,Schlamp M C,Kadavanich A V,et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society ,1997,119:7019-7029. [20] Jun S,Jang E,Lim J E. Synthesis of multi-shell nanocrystals by a single step coating process[J]. Nanotechnology ,2006,17:3892-3896. [21] Mokari T,Rothenberg E,Popov I,et al. Selective growth of metal tips onto semiconductor quantum rods and tetrapods[J]. Science ,2004,304:1787-1790. [22] Mokari T,Sztrum C G,Salant A,et al. Formation of asymmetric one-side metal-tipped semiconductor nanocrystal dots and rods[J]. Nature Materials ,2005,4:855-863. [23] Saunders A E,Popov I,Banin U. Synthesis of hybrid CdS-Au colloidal nanostructures[J]. The Journal of Physical Chemistry B,2006,110:25421-25429. [24] Menagen G,Mocatta D,Salant A,et al. Selective gold growth on CdSe seeded CdS nanorods[J]. Chemistry of Materials ,2008,20:6900-6902. [25] Costi R,Saunders A E,Elmalem E,et al. Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells[J]. Nano Letters ,2008,8:637-641. [26] Mokari T,Aharoni A,Popov I,et al. Diffusion of gold into InAs nanocrystals[J]. Angewandte Chemie International Edition ,2006,45:8001-8005. [27] Yang J,Levina L,Sargent E H,et al. Heterogeneous deposition of noble metals on semiconductor nanoparticles in organic or aqueous solvents[J]. Journal of Materials Chemistry ,2006,16:4025-4028. [28] Yang J,Elim H I,Zhang Q,et al. Rational synthesis,self-assembly,and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition[J]. Journal of the American Chemical Society ,2006,128:11921-11926. [29] Shi W L,Zeng H,Sahoo Y,et al. A general approach to binary and ternary hybrid nanocrystals[J]. Nano Letters ,2006,6:875-881. [30] Talapin D V,Yu H,Shevchenko E V,et al. Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures[J]. The Journal of Physical Chemistry C ,2007,111:14049-14054. [31] Zhao N N,Li L S,Huang T,et al. Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles[J]. Nanoscale ,2010,2:2418-2423. [32] Huang S S,Huang J M,Yang J A,et al. Chemical synthesis,structure characterization,and optical properties of hollow PbSx-solid Au heterodimer nanostructures[J]. Chemistry-A European Journal ,2010,16:5920-5926. [33] Yang J,Ying J Y. Room-temperature synthesis of nanocrystalline Ag 2 S and its nanocomposites with gold[J]. Chemical Communications ,2009,22:3187-3189. [34] Yang J,Ying J Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis[J]. Nature Materials ,2009,8:683-689. [35] Yang J,Lee J Y,Ying J Y. Phase transfer and its applications in nanotechnology[J]. Chemical Society Reviews ,2011,40:1672-1679. [36] Brust M,Walker M,Bethell D,et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system[J]. Journal of the Chemical Society , Chemical Communications ,1994,7:801-802. [37] Brust M,Fink J,Bethell D,et al. Synthesis and reactions of functionalised gold nanoparticles[J]. Journal of the Chemical Society , Chemical Communications ,1995,16:1655-1656. [38] Ginger D S,Greenham N C. Charge injection and transport in films of CdSe nanocrystals[J]. Journal of Applied Physics ,2000,87:1361-1368. [39] Koch N,Kahn A,Pireaux J J,et al. Conjugated organic molecules on metal versus polymer electrodes:Demonstration of a key energy level alignment mechanism[J]. Applied Physics Letters ,2003,82:70-72. [40] Salant A,Amitay-Sadovsky E,Banin U. Direct self-assembly of gold-tipped CdSe nanorods[J]. Journal of the American Chemical Society ,2006,128:10006-10007. [41] Chan W C W,Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science ,1998,281:2016-2018. [42] Willoughby A F W. Atomic diffusion in semiconductors[J]. Reports on Progress in Physics ,1978,41:1665-1705. [43] Gösele U,Frank W,Seeger A. Mechanism and kinetics of the diffusion of gold in silicon[J]. Applied Physics A ,1980,23:361-368. [44] Hiraki A. Low temperature reactions at Si/metal interfaces:What is going on at the interfaces[J]. Surface Science Reports ,1983,3:357-412. [45] Gösele U M. Fast diffusion in semiconductors[J]. Annual Review of Materials Science ,1988,18:257-282. [46] Mathiot D. Gold,self-,and dopant diffusion in silicon[J]. Physical Review B ,1992,45:13345-13355. [47] Yin Y,Rioux R M,Erdonmez C K,et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect[J]. Science ,2004,304:711-714. [48] Son D H,Hughes S M,Yin Y,et al. Cation exchange reactions in ionic nanocrstals[J]. Science ,2004,306:1009-1012. [49] Zhao N,Qi L. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants[J]. Advanced Materials ,2006,18:359-362. [50] Lee J S,Shevchenko E V,Talapin D V. Au-PbS core-shell nanocrystals:Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer[J]. Journal of the American Chemical Society ,2008,130:9673-9675. [51] Zhu J M,Shen Y H,Xie A J,et al. Tunable surface plasmon resonance of Au@Ag 2 S core-shell nanostructures containing voids[J]. Journal of Materials Chemistry ,2009,19:8871-8875. [52] Li M,Yu X-F,Liang S,et al. Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions[J]. Advanced Functional Materials ,2011,21:1788-1794. [53] Robinson R D,Sadtler B,Demchenko D O,et al. Spontaneous superlattice formation in nanorods through partial cation exchange[J]. Science ,2007,317:355-358. [54] Dukovic G,Merkle M G,Nelson J H,et al. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures[J]. Advanced Materials ,2008,20:4306-4311. [55] Elmalem E,Saunders A E,Costi R,et al. Growth of photocatalytic CdSe-Pt nanorods and nanonets[J]. Advanced Materials ,2008,20:4312-4317. [56] Habas S E,Yang P D,Mokari T. Selective growth of metal and binary metal tips on CdS nanorods[J]. Journal of the American Chemical Society ,2008,130:3294-3295. [57] Harbour J R,Wolkow R,Hair M L. Effect of platinization on the photoproperties of CdS pigments in dispersion. Determination by H 2 evolution,O 2 uptake,and electron spin resonance spectroscopy[J]. The Journal of Physical Chemistry ,1981,85:4026-4029. [58] Reber J F,Rusek M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide[J]. The Journal of Physical Chemistry ,1986,90:824-834. [59] Frank A J,Goren Z,Willner I. Photohydrogenation of acetylene and ethylene by Pt and Rh supported on CdS semiconductor particles[J]. Journal of the Chemical Society , Chemical Communications ,1986,15:1029-1030. [60] Manna L,Scher E C,Li L S,et al. Epitaxial growth and photochemical annealing of grade CdS/ZnS shells on colloidal CdSe nanorods[J]. Journal of the American Chemical Society ,2002,124:7136-7145. [61] Bard A J. Standard Potentials in Aqueous Solutions[M]. IUPAC,Marcel Dekker,New York,1985. [62] Carbone L,Kudera S,Giannini C,et al. Selective reactions on the tips of colloidal semiconductor nanorods[J]. Journal of Materials Chemistry ,2006,16:3952-3956. [63] Motte L,Pileni M P. Influence of length of alkyl chains used to passivate silver sulfide nanoparticles on two- and three- dimensional self-organization[J]. The Journal of Physical Chemistry B,1998,102:4104-4109. [64] Gao F,Lu Q,Zhao D. Controllable assembly of ordered semiconductor Ag 2 S nanostructures[J]. Nano Letters ,2003,3:85-88. [65] Liu J,Raveendran P,Shervani Z,et al. Synthesis of Ag 2 S quantum dots in water-in CO 2 microemulsions[J]. Chemical Communications ,2004,22:2582-2583. [66] Wang X,Liu W,Hao J,et al. A simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable sizes[J]. Chemistry Letters ,2005,34:1664-1665. [67] Gao F,Lu Q,Komarneni S. Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions[J]. Chemistry of Materials ,2005,17:856-860. [68] Wang X,Zhuang J,Peng Q,et al. A general strategy for nanocrystal synthesis[J]. Nature ,2005,437:121-124. [69] Shi H,Fu X,Zhou X,et al. Preparation of organic fluids with high loading concentration of Ag 2 S nanoparticles using the extractant cyanex 301[J]. Journal of Materials Chemistry ,2006,16:2097-2101. [70] Brelle M C,Zhang J Z,Nguyen L,et al. Synthesis and ultrafast study of cysteine- and glutathione-capped Ag 2 S semiconductor colloidal nanoparticles[J]. The Journal of Physical Chemistry A ,1999,103:10194-10201. [71] Yang L,Xing R,Shen Q,et al. Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution[J]. The Journal of Physical Chemistry B ,2006,110:10534-10539. [72] Mo X,Krebs M P,Yu S M. Directed synthesis and assembly of nanoparticles using purple membrane[J]. Small ,2006,2:526-529. [73] Yang J,Ying J Y. Nanocomposites of Ag 2 S and noble metals[J]. Angewandte Chemie International Edition ,2011,50:4637-4643. [74] Yang J,Lee J Y,Too H P,et al. A bis( p -sulfonatophenyl)phenyl phosphine-based synthesis of hollow Pt nanospheres[J]. The Journal of Physical Chemistry B ,2006,110:125-129. [75] Tan Y-N,Yang J,Lee J Y,et al. Mechanistic study on the bis( p -sulfonatophenyl)phenylphosphine synthesis of monometallic Pt hollow nanoboxes using Ag*-Pt core-shell nanocubes as sacrificial templates[J]. The Journal of Physical Chemistry C ,2007,111:14084-14090. [76] Peng Z,Yang H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures[J]. Journal of the American Chemical Society ,2009,131:7542-7543. [77] Lim B,Jiang M,Camargo P H C,et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science ,2009,324:1302-1305. [78] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells:A review[J]. Materials Chemistry and Physics ,2003,78:563-573. [79] Liu H,Song C,Zhang L,et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources ,2006,155:95-110. [80] Allen R G,Lim C,Yang L X,et al. Novel anode structure for the direct methanol fuel cell[J]. Journal of Power Sources ,2005,143:142-149. [81] Liu Z,Lee J Y,Han M,et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions[J]. Journal of Materials Chemistry ,2002,12:2453-2458. [82] Wagner C D,Naumkin A V,Kraut-Vass A,et al. NIST standard reference database 20,Version 3.2(Web Version). [83] Pelizzetti E,Schiavello M. Photochemical Conversion and Storage of Solar Energy[M]. Berlin:Springer,1990. [84] Eastman D E. Photoelectric work functions of transition,rare earth,and noble metals[J]. Physical Review B ,1970,2:1-2. [85] Michaelson H B. The work function of the elements and its periodicity[J]. Journal of Applied Physics ,1977,48:4729-4733. [86] Höhler G. Solid Surface Physics[M]. Berlin:Springer,1979. [87] Steele B C,Heinzel H A. Materials for fuel-cell technologies[J]. Nature ,2001,414:345-352. [88] Perry M L,Fuller T F. A historical perspective of fuel cell technology in the 20th century[J]. Journal of The Electrochemical Society ,2002,149:S59-S67. [89] Chen J,Lim B,Lee E P,et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today ,2009,4:81-95. [90] Goodenough J B,Hamnett A,Kennedy B J,et al. XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell[J]. Electrochimica Acta ,1987,32:1233-1238A. [91] Motoo S,Furuya N. Electrochemistry of platinum single crystal surfaces:Part II. Structural effect on formic acid oxidation and poison formation on Pt (111),(100) and (110) [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry ,1985,184:303-316. [92] Gurau B,Viswanathan R,Liu R,et al. Structural and electrochemical characterization of binary,ternary,and quaternary platinum alloy catalysts for methanol electro-oxidation[J]. The Journal of Physical Chemistry B ,1998,102:9997-10003. [93] Cotton F A,Wilkinson G. Advanced Inorganic Chemistry[M]. New York:Wiley-Interscience,1980. [94] Shukla A K,Aricò A S,El-Khatib K M,et al. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons[J]. Applied Surface Science ,1999,137:20-29. [95] Yeager E. Electrocatalysts for O 2 reduction[J]. Electrochimica Acta ,1984,29:1527-1537. [96] Aricò A S,Srinivasan S,Antonucci V. DMFCs:from Fundamental aspects to technology development[J]. Fuel Cells ,2001,1:133-161. [97] Marković N M,Ross P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports ,2002,45:117-229. [98] Chen W,Kim J,Sun S,et al. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J]. The Journal of Physical Chemistry C ,2008,112:3891-3898. [99] Toda T,Iqarashi H,Uchida H,et al. Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni,and Co[J]. Journal of The Electrochemical Society ,1999,146:3750-3756. [100] Zhang J,Vukmirovic M B,Sasaki K,et al. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J]. Journal of the American Chemical Society ,2005,127:12480-12481. [101] Zhang J,Vukmirovic M B,Xu Y,et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J]. Angewandte Chemie International Edition ,2005,44:2132-2135. [102] Stamenković V R,Fowler B,Mun B S,et al. Improved osygen reduction activity on Pt 3 Ni(111) via increased surface site availability[J]. Science ,2007,315:493-497. [103] Stamenković V R,Mun B S,Arenz M,et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials ,2007,6:241-247. [104] Xu C,Goodman D W. Adsorption and reaction of formic acid on a pseudomorphic palladium monolayer on Mo(110) [J]. The Journal of Physical Chemistry ,1996,100:245-252. [105] Baldauf M,Kolb D M. Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes[J]. The Journal of Physical Chemistry ,1996,100:11375-11381. [106] Kibler L A,Kolb D M. Physical electrochemistry:Recent developments[J]. Zeitschrift für Physikalische Chemie ,2003,217:1265-1279. [107] Chorkendorff I,Niemantsverdriet J W. Concepts of Modern Catalysis and Kinetics[M]. Weinheim:Wiley-VCH,2003. [108] Kibbler L A,El-Aziz A M,Hoyer R,et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition ,2005,44:2080-2084. [109] Kumar S,Zou S. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles:Effects of film thickness[J]. Langmuir ,2007,23:7365-7371. [110] Naohara H,Ye S,Uosaki K. Electrocatalytic reactivity for oxygen reduction at epitaxially grown Pd thin layers of various thickness on Au(111) and Au(100) [J]. Electrochimica Acta ,2000,45:3305-3309. [111] Naohara H,Ye S,Uosaki K. Thickness dependent electrochemical reactivity of epitaxially palladium thin layers on Au(111) and Au(110) surfaces[J]. Journal of Electroanalytical Chemistry ,2001,500:435-445. [112] El-Aziz A M,Kibler L A. Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111) [J]. Journal of Electroanalytical Chemistry ,2002,534:107-114. [113] Kibler L A,El-Aziz A M,Kolb D M. Electrochemical behaviour of pseudomorphic overlayers:Pd on Au(111) [J]. Journal of Molecular Catalysis A: Chemical ,2003,199:57-63. [114] Yang J H,Cheng C H,Zhou W,et al. Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction[J]. Fuel Cells ,2010,10:907-913. [115] Yang J H,Zhou W,Cheng C H,et al. Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst[J]. ACS Applied Materials & Interfaces ,2010,2:119-126. [116] Yang J H,Lee J Y,Zhang Q,et al,Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORR with and without methanol[J]. Journal of the Electrochemical Society ,2008,155:B776-B781. [117] Yang J,Chen X,Ye F,et al. Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect[J]. Journal of Materials Chemistry ,2011,21:9088-9094. [118] Adzic R R,Zhang J,Sasaki K,et al. Platinum monolayer fuel cell electrocatalysis[J]. Topics in Catalysis ,2007,46:249-262. [119] Stamenković V R,Schmidt T J,Ross P N,et al. Surface composition effects in electrocatalysis:Kinetics of oxygen reduction on well-defined Pt 3 Ni and Pt 3 Co alloy surfaces[J]. the Journal of Physical Chemistry B ,2002,106:11970-11979. [120] Xu Y,Ruban A V,Mavrikakis M. Adsorption and dissociation of O 2 on Pt-Co and Pt-Fe alloys[J]. Journal of the American Chemical Society ,2004,126:4717-4725. [121] Gasteiger H A,Marković N M,Ross P N,et al. Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys[J]. the Journal of Physical Chemistry ,1993,97: 12020-12029. [122] Wang J M,Brankovic S R,Zhu Y,et al. Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles[J]. Journal of the Electrochemical Society ,2003,150:A1108-A1117. [123] Antolini E,Salgado J R C,Gonzalez E R. Carbon supported Pt75M25 (M = Co,Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry ,2005,580:145-154. [124] Storhoff J J,Elghanian R,Mucic R C,et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J]. Journal of the American Chemical Society ,1998,120:1959-1964. [125] Storhoff J J,Mirkin C A. Programmed materials synthesis with DNA[J]. Chemical Reviews ,1999,99:1849-1862. [126] Reynolds R A,Mirkin C A,Letsinger R L. Homogeneous,nanoparticle-based quantitative colorimetric detection of oligonucleotides[J]. Journal of the American Chemical Society ,2000,122:3795-3796. [127] Mirkin C A. Programming the assembly of two- and three- dimensional architectures with DNA and nanoscale inorganic building blocks[J]. Inorganic Chemistry ,2000,39:2258-2272. [128] Jin R,Wu G,Li Z,et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies[J]. Journal of the American Chemical Society ,2003,125:1643-1654. [129] Negishi Y,Takasugi Y,Sato S,et al. Magic-numbered Au n clusters protected by glutathione monolayers ( n = 18,21,25,28,32,39) :Isolated and spectroscopic characterization[J]. Journal of the American Chemical Society ,2004,126:6518-6519. [130] Wang G,Huang T,Murray R W,et al. Near-IR luminescence of monolayer-protected metal clusters[J]. Journal of the American Chemical Society ,2005,127:812-813. [131] Negishi Y,Nobusada K,Tsukuda T. Glutathione-protected gold clusters revisited:Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals[J]. Journal of the American Chemical Society ,2005,127:5261-5270. [132] Shichibu Y,Negishi Y,Tsunoyama H,et al. Extremely high stability of glutathionate-protected Au 25 clusters against core etching[J]. Small ,2007,3:835-839. [133] Negishi Y,Chaki N K,Shichibu Y,et al. Origin of magic stability of thiolated gold clusters:a Case study on Au 25 (SC 6 H 13 ) 18 [J]. Journal of the American Chemical Society ,2007,129:11322-11323. [134] Xie J,Zheng Y,Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society ,2009,131:888-889. [135] Xie J,Zheng Y,Ying J Y. Highly selective and ultrasensitive detection of Hg 2+ based on fluorescence quenching of Au nanoclusters by Hg 2+ -Au + interactions[J]. Chemical Communications ,2010,46:961-963. [136] Svoboda J,Fischer F D,Fratzl P,et al. Diffusion in multi-component systems with no or dense sources and sinks for vacancies[J]. Acta Materialia ,2002,50:1369-1381. [137] Matsukawa K,Shirai K,Yamaguchi H,et al. Diffusion of transition-metal impurities in silicon[J]. Physica B : Condensed Matter ,2007,401-402:151-154. [138] Höglund A,Castleton C W M,Mirbt S. Diffusion mechanism of Zn in InP and GaP from first principles[J]. Physical Review B ,2008,77:113201. [139] Baykov V I,Korzhavyi P A,Johansson B. Diffusion of interstitial Mn in the dilute magnetic semiconductor (Ga,Mn)As:the Effect of a charge state[J]. Physical Review Letters ,2008,101:177204. [140] Yu H C,Van der Ven A,Thornton K. Theory of grain boundary diffusion induced by the Kirkendall effect[J]. Applied Physics Letters ,2008,93:091908. [141] Van der Ven A,Yu H C,Ceder G,et al. Vacancy mediated substitutional diffusion in binary crystalline solids[J]. Progress in Materials Science ,2010,55:61-105. [142] Franchini I R,Bertoni G,Falqui A,et al. Colloidal PbTe-Au nanocrystal heterostructures[J]. Journal of Materials Chemistry ,2010,20:1357-1366. [143] Yang J,Ying J Y. Diffusion of gold from the inner core to the surface of Ag 2 S nanocrystals[J]. Journal of the American Chemical Society ,2010,132:2114-2115. [144] Tzeli D,Petsalakis I D,Theodorakopoulos G. Theoretical study of adsorption and diffusion of group IIIA metals on Si(111) [J]. the Journal of Physical Chemistry C,2009,113:13924-13932. [145] Ostwald W. Studien uber die bildung und umwandlung fester korper[J]. Zeitschrift für Physikalische Chemie ,1897,22:289-330. [146] Qu J,Liu H,Wei Y,et al. Coalescence of Ag 2 S and Au nanocrystals at room temperature[J]. Journal of Materials Chemistry ,2011,21: 11750-11753. [147] Henglein A,Holzwarth A,Mulvaney P. Fermi level equilibration between colloidal lead and silver particles in aqueous solution[J]. the Journal of Physical Chemistry ,1992,96: 8700-8702. [148] Courty A,Henry A I,Goubet N,et al. Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals[J]. Nature Materials ,2007,6:900-907. [149] Ramirez E,Eradès L,Philippot K,et al. Shape control of platinum nanoparticles[J]. Advanced Functional Materials ,2007,17:2219-2228. [150] Johnson S H,Johnson C L,May S J,et al. Co@CoO@Au core-multi-shell nanocrystals[J]. Journal of Materials Chemistry ,2010,20:439-443. [151] Grouchko M,Popov I,Uvarov V,et al. Coalescence of silver nanoparticles at room temperature:Unusual crystal structure transformation and dendrite formation induced by self-assembly[J]. Langmuir ,2009,25:2501-2503. [152] Radziuk D V,Zhang W,Shchukin D,et al. Ultrasonic alloying of preformed gold and silver nanoparticles[J]. Small ,2010,6:545-553. |
[1] | Shenzhi ZHANG, Likai WANG, Yinggang SUN, Heng LÜ, Ziyin YANG, Leilei LI, Zhongfang LI. Construction of two dimensional carbon-supported Au4Pd2 catalysts and their electrocatalytic performances [J]. Energy Storage Science and Technology, 2021, 10(6): 2028-2038. |
[2] | LUO Hongbin, DENG Linwang, XUE Chengsheng, LI Duohui, FENG Tianyu, WANG Chao, ZOU Detian. The analysis and simulation of SiC and its application in mobile energy storage power station [J]. Energy Storage Science and Technology, 2017, 6(5): 1105-1113. |
[3] | WANG Shaoliang, FAN Xinzhuang, ZHANG Jianguo, WU Xiaoliang, LIU Jianguo, YAN Chuanwei. Optimization of the electrolyte ratio for the vanadium flow battery and its effect on the battery performance [J]. Energy Storage Science and Technology, 2015, 4(5): 510-514. |
[4] | TONG Jinhui, XIONG Sixing, ZHOU Yinhua. Progress in organic tandem solar cells [J]. Energy Storage Science and Technology, 2014, 3(6): 590-596. |
[5] | XU Changzhi, JIN Yingxia, LIU Qingju. Research progress in perovskite solar cells [J]. Energy Storage Science and Technology, 2014, 3(6): 597-601. |
[6] | YU Feng, ZHU Mingyuan, WANG Xugen, WANG Gang, QI Peirong, CHEN Dong, DAI Bin. Clean energy and energy storage research --The 2nd international conference on clean energy sciences [J]. Energy Storage Science and Technology, 2014, 3(5): 457-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||