Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (3): 189-198.doi: 10.3969/j.issn.2095-4239.2013.03.003
• Physical energy storage • Previous Articles Next Articles
LI Yuanyuan, CHENG Xiaomin
Received:
2013-01-13
Revised:
2013-03-26
Online:
2013-06-19
Published:
2013-06-19
CLC Number:
LI Yuanyuan, CHENG Xiaomin. Review on the low melting point alloys for thermal energy storage and heat transfer applications[J]. Energy Storage Science and Technology, 2013, 2(3): 189-198.
[1] Reilly J,Paltsev S,Felzer B,Wang X,Kicklighter D,Melillo J,Prinn R,Sarofim M,Sokolov A,Wang C. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone[J]. Energy Policy ,2006,35(11):5370-5383. [2] Qian Bozhang(钱伯章). 节能减排 可持续发展的必由之路 [M]. Beijing:Science Press,2008. [3] Zhang Zhengmin(张正敏),Wang Gehua(王革华),Gao Hu(高虎). 中国可再生能源发展战略与政策研究[J]. Review of Economic Research (经济研究参考),2004(84): 26-32. [4] Pecheco J E,Gilbert R. Overview of recent results of the solar two test and evaluations program, renewable and advanced energy systems for the 21st century[C]// Proc. Of 1999 ASME Int. Solar Energy Conf.,Maui,HI,1999. [5] Carlos M S. An overview of GSP in Europe[C]// North Africa and the Middle. Madrid:CSP and CPV Finance and Investment Summit,2008. [6] Hadjieva M,Bozukov M,Tsacheva T. Next generation of phase change material composites for increased energy efficiency in steam commercial plants[C]// The Fourth International Green Energy Conference,Beijing,2008. [7] Liang Hong(梁红). Evalution of thermal stability for heat transfer fluids[J]. Petroleum Processing and Petrochemicals (石油炼制与化工),2002,33(5):53-56. [8] Herrmann U,Kelly B,Price H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy ,2004,29:883-893. [9] Takahashi Y,Sakamoto R,Kamimoto M. Heat capacities and latent heats of LiNO 3 , NaNO 3 and KNO 3 [J]. International Journal of Thermophysics ,1988,9(6):1081-1090. [10] Tufen R,Petitet J P,Denielou I,Neindre L B. Experimental determination of the thermal conductivity of molten pure salts and salt mixtures[J]. Int. J. Thermophys ,1985,6(4):315-330. [11] Heidenreich G R,Parekh M B.Thermal energy storage for organic Rankine cycle solar dynamic space power systems[C]// Proceedings of 21st Intersociety Energy Conversion Engineering Conference 2,1986,791-797. [12] Venkatesetty H V,LeFrois R T. Thermal energy storage for solar power plants[C]//Proceedings of 11th Intersociety Energy Conversion Engineering Conference,1976:606-612. [13] Pincemin S,Olives R,Py X,Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells ,2008,92(6):603-613. [14] Zoubir A,Jerome L,Elena P D. KNO 3 /NaNO 3 -Graphite materials for thermal energy storage at high temperature:Part I Elaboration methods and thermal properties[J]. Applied Thermal Engineering ,2010,30(13):1580-1585. [15] Jerome L,Zoubir A,Elena P D. KNO 3 /NaNO 3 -Graphite materials for thermal energy storage at high temperature:Part II Phase transition properties[J]. Applied Thermal Engineering ,2010,30(13):1586-1593. [16] Zhang Jianzhong(张建忠). 采用新的热载体 勇闯节能新途径[J]. Quality for Chemical Industry (化工质量),2000(3):15-17. [17] Wu Xizhe(武希哲),Li Yunkang(李运康). 低熔点合金[J]. Rare Metal Materials and Engineering (稀有金属材料与工程),1984,1:53-56. [18] Zhao Tianchan(赵天婵),Ouyang Zhong(欧阳忠). 低熔点合金的成分及其熔点[J]. Machinery Manufacturing Engineer (机械工艺师),1996,8:21-22. [19] Gasanaliev A M,Gamataeva B Y. Heat-accumulating properties of melts[J]. Russian Chemical Reviews ,2000,69(2):179-186. [20] Voronina T B,Gudkov V I,Shimanskii O V. Energy storage and ways of increasing the efficiency of operation of power plants and economy of energy[R]. Moscow:Khimiya,1986. [21] Chen S W,Wang C H,Lin S K, et al . Thermal and Mechanical properties of Sn-Pb solder alloys[J]. J.Mater. Sci. : Mater. Electron ,2007,18:19-37. [22] Qiao Zhiyu(乔治郁),Xie Yunan(谢允安),He Mingming(何鸣鸿),Zhang Qiyun(张启运). 无铅焊料研究进展和若干前沿问题[J]. Chinese Journal of Rare Metals (稀有金属),1996,2:139-143. [23] Wang Yang(王阳),Hu Wangyu(胡望宇). Research progress on Sn-Bi-based low-temperature Pb-free solder alloys[J]. Materials Review (材料导报),1999,13:23-26. [24] Wang Huanrong(王焕荣),Ye Yifu(叶以富),Min Guanghui(闵光辉),Teng Xinying(滕新营),Shi Zhiqiang(石志强),Qin Jingyu(秦敬玉). Study on liquid structure and viscosity of eutectic gallium-indium alloy[J]. Acta Metallrugica Sinica (金属学报),2001,37:801-804. [25] Abtew M,Selvaduray G. Lead-free solders in microelectronics[J]. Materials Science and Engineering ,2000,27:95-141. [26] Aeda M,Toshio A U. Low-melting point alloy for fusible plug[R]. Japan,2001. [27] El-Daly A A,Swilem Y,Makled M H,El-Shaarawy M G,Abdraboh A M. Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys[J]. Journal of Alloys and Compounds ,2009,484(1-2):134-142. [28] Kabassis H,Rutter J W,Winegard W C. Microstructure of one of the ternary eutectic alloys in the Bi-In-Sn system[J]. Metall. Trans. A ,1984,15(8):1515-1517. [29] Smither R K. Liquid metal cooling of synchrotron optics[J]. SPIE High Heat Flux Engineering ,1992,1739:116-134. [30] Yu Tieming(俞铁铭). Research on the heat storage properties of Sn-Bi-Zn-Cu-Pb alloys as phase change materials in medium temperature[D]. Wuhan:Wuhan University of Technology,2012. [31] Li Yuanyuan(李元元),Cheng Xiaomin(程晓敏),Yu Tieming(俞铁铭). Thermal cycling stability of Sn-Zn phase change heat storage alloy[J]. Special Casting & Nonferrous Alloys (特种铸造及有色合金),2012,7:674-676. [32] Shimoji M. Liquid Metals[M]. New York:Academic Press,1977. [33] Ma Kunquan(马坤全). Study on liquid metal cooling method for thermal management of computer chip[D]. Beijing:Chinese Academy of Science,2008. [34] Prokhorenko V Y,Borisjuk A K,Yamkovy V N. Temperature-time dependence of the parameters of magnetized suspension on the basis of metallic liquid alloys[C]// Riga:Proc. 5th Int. Conf. on Magnetic Fluids,1989. [35] Prokhorenko V Ya,Borisjuk A K,Pokrasin M A,Prokhorenko S V,Kotov V V. Liquid gallium:Potential uses as a heat-transfer agent[J]. High Temperature ,2000,38(6):954-968. [36] Chen Deming(陈德明),Shu Jie(舒杰),Li Jianhong(李戬洪),Xu Gang(徐刚). Analysis on heat transfer characteristic of lead-bismuth eutectic alloy applied in solar thermal power generation[J]. Journal of Power Engineering (动力工程),2008,28(5):812-815. [37] Qian Zengyuan(钱增源). 低熔点金属的热物性[M]. Beijing:Science Press,1985. [38] Sato K,Furutani A,Saito M,Isozaki M,Suganuma K,Imahori S. Melting attack of solid plates by a high-temperature liquid jet [II] Erosion behavior by a molten metal jet[J]. Nuclear Engineering and Design ,1991,132(2):171-186. [39] Yang W S. Blanket design studies for maximizing the discharge burnup of liquid metal cooled ATW systems[J]. Annals of Nuclear Energy ,2002,29:509-523. [40] Smither R K,Forster G A,Kot C A,Kuzay T M. Liquid gallium metal cooling for optical elements with high heat loads[J]. Nuclear Instrument Methods in Physics Research A ,1988,266(1-3):517-524. [41] Men Yubin(门玉宾),Ma Junjun(马军军),Wang Shufu(王书福), Peng Wengen(彭稳根),Liu Yuanchun(刘元春),He Yurong(何玉荣). Numerical investigation on the natural convection of liquid gallium[J]. Journal of Harbin Institute of Technology (哈尔滨工业大学学报),2011,1:114-118. [42] Ma K Q,Liu J. Heat driven liquid metal cooling device for the thermal management of computer chip[J]. Journal of Physics D : Applied Physics ,2007,40(15):4722-4729. [43] Ma K Q,Liu J. Liquid metal cooling in thermal management of computer chip[J]. Frontiers of Energy and Power Engineering in China ,2007,1(4):384-402. [44] Baldin Yu F,Markov V G. Structural Materials for Facilities with Liquid-metal Heat-transfer Agents[M]. Leningrad:Sudpromgiz,1961. [45] Borishanskii M V,Kutateladze S S,Novikow I I, et al . Liquid Metal Heat Transfer Agents[M]. Moscow:Atomizdat,1976. [46] Yatsenko S P,Danilin V N. The Physicochemical Properties of Gallium Based Alloys[M]. Moscow:Nauka,1974. [47] Cathcart J V,Manly W D. The mass transfer properties of various metals and alloys in liquid lead[J]. Corrosion ,1956(12):43-47. [48] Manly W D. Fundamentals of liquid metal corrosion[J]. Corrosion ,1956,12:46-52. [49] Shimotake H,Hesson J C. Corrosion by fused salts and heavy liquid metals A survey[J]. Advances in Chemistry Series ,1967,64:149-185. [50] Park J J,Butt D P,Beard C A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source[J]. Nuclear Engineering and Design ,2000,196:315-325. [51] Sannier J,Santarini G. Corrosion two ferritic steels by liquid lead circulated in a thermosypon, finding of model[J]. Journal of Nuclear Materials ,1982,107:196-217. [52] Asher R C,Davies D,Beetham S A. Some observations on the compatibility of structural materials with molten lead[J]. Corrosion Science ,1977,17:545-557. [53] James J A,Trotman J. Corrosion of steels in liquid bismuth and lead[J]. Journal of the Iron and Steel Institute ,1960,3:319-323. [54] Wilson G W. Study of compatibility of some creep resistant steels with liquid bismuth in non isothermal systems[J]. Journal of the Iron and Steel Institute ,1958,190:271-276. [55] Horsley G W,Maskrey J T. The corrosion of 2.25Cr-1Mo steel by liquid bismuth[J]. Journal of the Iron and Steel Institute ,1958,189:139-148. [56] Dawe D W,Parry G W,Wilson G W. Study of compatibility of some creep resistant steels with liquid bismuth in non-isothermal systems[J]. Journal of British Nuclear Energy Conference ,1960,5:24-29. [57] Cygan R. Circulation of lead-bismuth eutectic at intermediate temperatures[R]. North American Aviation Report,NAA-SR-253,1953. [58] Cygan R. Lead-bismuth eutectic at intermediate temperatures[R]. North American Aviation Report,NAA-SR-1060,1954. [59] Romano A J,Klumet C J,Gurinsky D H. The investigation of container materials for Bi and Pb alloys[R]. Brookhaven National Laboratory Report,1963. [60] Ilincev G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitor[J]. Nuclear Engineering and Design ,2002,217:167-177. [61] Fazio C,Benamati G,Martini C,Palombarini G. Compatibility tests on steels in molten lead and lead-bismuth[J]. Journal of Nuclear Materials ,2001,296(1-3):243-248. [62] Muller G,Schumacher G,Zimmermann F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels[J]. Journal of Nuclear Materials ,2000,278(1):85-95. [63] Benamati G,Buttol P,Imbeni V,Martin C,Palombarini G. Behavior of materials for accelerator driven systems in stagnant molten lead[J]. Journal of Nuclear Materials ,2000,279(2-3):308-316. [64] Eliseeva O I,Tsisar V P,Fedirko V M,Matychak Y S. Changes in the phase composition of an oxide film on EP823 steel in contact with stagnant lead melt[J]. Materials Science ,2004,40(2):260-269. [65] Tsisar V P,Eliseeva O I,Fedirko V M,Lopushans'kyi V A. Corrosion behavior of α-Fe and 20Kh13 steel in contact with oxygen-containing lead melts[J]. Materials Science ,2003,39(4):539-544. [66] Eliseeva O I,Tsisar V P. Corrosion of 20Kh13 steel in lead melts saturated with oxygen[J]. Materials Science ,2005,41(5):603-608. [67] Fedirko V M,Eliseeva O I,Kalyandruk V I,Lopushans'kyi V A. Effects of admixtures of oxygen on the oxidation of iron and Fe-Cr alloys in lead melts[J]. Materials Science ,1997,33(3):358-363. [68] Fedirko V M,Eliseeva O I,Kalyandruk V I,Lopushans'kyi V A. Corrosion of Armco iron and model Fe-Cr-Al alloys in oxygen-containing lead melts[J]. Materials Science ,1997,33(2):207-211. [69] Furukawa T,Muller G,Schumacher G,Weisenburger A,Heinzel A,Aoto K. Effect of oxygen concentration and temperature on compatibility of ODS steel with liquid, stagnant Pb 45 Bi 55 [J]. Journal of Nuclear Materials ,2004,335(2):189-193. [70] Barbier F,Benamati G,Fazio C,Rusanov A. Compatibility tests of steels in flowing liquid lead-bismuth[J]. Journal of Nuclear Materials ,2001,295(2-3):149-156. [71] Zhang J,Li N,Chen Y T,Rusanov A E. Corrosion behaviors of US steels in flowing lead-bismuth eutectic (LBE)[J]. Journal of Nuclear Materials ,2005,336(1):1-10. [72] Muller G,Heinzel A,Konys J,Schumacher G,Weisenburger A,Zimmermann F,Engelko V,Rusanov A,Markov V. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 ℃ after 2000 h[J]. Journal of Nuclear Materials ,2002,301(1):40-46. [73] Muller G,Heinzel A,Konys J,Schumacher G,Weisenburger A,Zimmermann F,Engelko V,Rusanov A,Markov V. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 ℃ after 4000-7200 h[J]. Journal of Nuclear Materials ,2004,335(2):163-168. [74] Barbier F,Rusanov A. Corrosion behavior of steels in flowing lead-bismuth[J]. Journal of Nuclear Materials ,2001,296(1-3):231-236. [75] Kondo M,Takahashi M,Sawada N,Hata K. Corrosion of steels in lead-bismuth flow[J]. Journal of Nuclear Science and Technology ,2006,43(2):107-116. [76] Briceno D G,Munoz M F J,Crespo L S,Esteban F,Torres C. Behavior of F82H mod. stainless steel in lead-bismuth and temperature gradient[J]. Journal of Nuclear Materials ,2001,296(1-3):265-272. [77] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth[J]. Corrosion Science ,2009,51(6):1207-1227. |
[1] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[2] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[3] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[4] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[5] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[6] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[7] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[8] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[9] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[10] | Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy [J]. Energy Storage Science and Technology, 2022, 11(1): 9-18. |
[11] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[12] | Guoliang XU, Yujie ZHANG, Xiaoming HUANG, Rui HE. Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time [J]. Energy Storage Science and Technology, 2021, 10(6): 2252-2259. |
[13] | Dehou XU, Xuezhi ZHOU, Yujie XU, Zhitao ZUO, Haisheng CHEN. Performance law of a new composite seasonal underground thermal storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. |
[14] | Yanfeng TIAN, Xinxin ZHAO, Qitong FU, Zhe WANG, Xuzhang ZHAO. Structure analysis of high temperature heat storage conductor based on thermal-electricity-magnetic field coupling [J]. Energy Storage Science and Technology, 2021, 10(3): 1051-1059. |
[15] | Xinmei LUO, Jia'an GU. Numerical analysis of fractal fins with different aspect ratios to enhance phase change material melting heat transfer [J]. Energy Storage Science and Technology, 2021, 10(2): 523-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||