Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (5): 433-450.doi: 10.3969/j.issn.2095-4239.2013.05.001
• Invited reviews • Next Articles
LIU Xinyan, PENG Hongjie, HUANG Jiaqi, ZHANG Qiang, WEI Fei
Received:
2013-04-28
Revised:
2013-05-30
Online:
2013-10-19
Published:
2013-10-19
CLC Number:
LIU Xinyan, PENG Hongjie, HUANG Jiaqi, ZHANG Qiang, WEI Fei. Carbon nanotubes for flexible energy storage devices--A review[J]. Energy Storage Science and Technology, 2013, 2(5): 433-450.
[1] Wang Z,Luan D,Madhavi S, et al . Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy & Environmental Science ,2012,5(1):5252-5256. [2] Hu L B,Wu H,La Mantia F, et al . Thin,flexible secondary Li-ion paper batteries[J]. ACS Nano ,2010,4(10):5843-5848. [3] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [4] Wang K,Luo S,Wu Y, et al . Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries[J]. Advanced Functional Materials ,2013,23(7):846-853. [5] Li N,Chen Z,Ren W, et al . Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences of the United States of America ,2012,109(43):17360-17365. [6] Kang F Y,He Y B,Li B H, et al . Carbon for energy storage and conversion[J]. New Carbon Materials ,2011,26(4):246-254. [7] De Volder M F L,Tawfick S H,Baughman R H, et al . Carbon nanotubes:Present and future commercial applications[J]. Science ,2013,339(6119):535-539. [8] Zhang Q,Huang J Q,Qian W Z, et al . The road for nanomaterials industry:A review on carbon nanotube production,post-treatment,and bulk applications for composite and energy storage[J]. Small ,2013,10:1237-1265. [9] Endo M,Muramatsu H,Hayashi T, et al . 'Buckypaper' from coaxial nanotubes[J]. Nature ,2005,433(7025):476. [10] Xu G H,Zhang Q,Zhou W P, et al . The feasibility of producing mwcnt paper and strong MWCNT film from VACNT array[J]. Applied Physics A : Materials Science & Processing ,2008,92(3):531-539. [11] Lv R T,Tsuge S,Gui X C, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper[J]. Carbon ,2009,47(4):1141-1145. [12] Lee H,Yoo J K,Park J H, et al . A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation[J]. Advanced Energy Materials ,2012,2(8):976-982. [13] Zhang Q,Huang J Q,Zhao M Q, et al . Carbon nanotube mass production: Principles and processes[J]. Chem. Sus. Chem. ,2011,4(7):864-889. [14] Jiang K L,Wang J P,Li Q Q, et al . Superaligned carbon nanotube arrays,films,and yarns:A road to applications[J]. Advanced Materials ,2011,23(9):1154-1161. [15] Sun D M,Liu C,Ren W C, et al . A review of carbon nanotube- and graphene-based flexible thin-film transistors[J]. Small ,2013,9(8):1188-1205. [16] Arora P. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society ,1998,145(10):3647. [17] Braithwaite J W. Corrosion of lithium-ion battery current collectors[J]. Journal of The Electrochemical Society ,1999,146(2):448. [18] Qin J,Zhang Q,Cao Z, et al . MnO x /SWCNT macro-films as flexible binder-free anodes for high-performance Li-ion batteries[J]. Nano Energy ,2013,10.1016/j.nanoen.2012.12.009. [19] Li X,Yang J,Hu Y, et al . Novel approach toward a binder-free and current collector-free anode configuration:Highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage[J]. Journal of Materials Chemistry ,2012,22(36):18847. [20] Johnson B A,White R E. Characterization of commercially available lithium-ion batteries[J]. Journal of Power Sources ,1998,70(1):48-54. [21] Hu L M, Cui Y. Energy and environmental nanotechnology in conductive paper and textiles[J]. Energy & Environmental Science ,2012,5(4):6423. [22] Hecht D S,Hu L M, Grüner G. Electronic properties of carbon nanotube/fabric composites[J]. Current Applied Physics ,2007,7(1):60-63. [23] Hu L,Choi J W,Yang Y, et al . Highly conductive paper for energy-storage devices[J]. Proceedings of The National Academy of Sciences of the United States of America ,2009,106(51):21490-21494. [24] Park S,Jayaraman S. Smart textiles:Wearable electronic systems[J]. MRS Bulletin ,2003,28(8):585-591. [25] Chen Z,Zhang D,Wang X, et al . High-performance energy-storage architectures from carbon nanotubes and nanocrystal building blocks[J]. Advanced Materials ,2012,24(15):2030-2036. [26] Jia X,Yan C,Chen Z, et al. Direct growth of flexible LiMn 2 O 4 /CNT lithium-ion cathodes[J]. Chemical Communications ,2011,47(34):9669-9671. [27] Jia X,Chen Z,Suwarnasarn A, et al . High-performance flexible lithium-ion electrodes based on robust network architecture[J]. Energy & Environmental Science ,2012,5(5):6845. [28] Jia X L,Chen Z,Cui X, et al . Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries[J]. ACS Nano ,2012,6(11):9911-9919. [29] Luo S,Wang K,Wang J, et al . Binder-free LiCoO 2 /carbon nanotube cathodes for high-performance lithium ion batteries[J]. Advanced Materials ,2012,24(17):2294-2298. [30] Grant L D R,Adams R D,da Silva L F M. Experimental and numerical analysis of single-lap joints for the automotive industry[J]. International Journal of Adhesion and Adhesives ,2009,29(4):405-413. [31] Wang D W,Li F,Zhao J P, et al . Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano ,2009,3(7):1745-1752. [32] Choi N S,Chen Z,Freunberger S A, et al . Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition ,2012,51(40):9994-10024. [33] Nyholm L,Nystrom G,Mihranyan A, et al . Toward flexible polymer and paper-based energy storage devices[J]. Advanced Materials ,2011,10.1002/adma.201004134. [34] Li X,Rong J P,Wei B Q. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress[J]. ACS Nano ,2010,4(10):6039-6049. [35] Chen C M,Zhang Q,Huang C H, et al. Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors[J]. Chemical Communications ,2012,48(57):7149-7151. [36] Weng Z,Su Y,Wang D W, et al. Graphene-cellulose paper flexible supercapacitors[J]. Advanced Energy Materials ,2011,1(5):917-922. [37] Xu G H,Zheng C,Zhang Q, et al . Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors[J]. Nano Research ,2011,4(9):870-881. [38] Meng C,Liu C,Fan S,Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties[J]. Electrochemistry Communications ,2009,11(1):186-189. [39] Cai Z B,Li L,Ren J, et al . Flexible,weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes[J]. Journal of Materials Chemistry A ,2013,1(2):258. [40] Cheng Y,Lu S,Zhang H, et al . Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors[J]. Nano Letters ,2012,12(8):4206-4211. [41] Zhang Z,Zhai T,Lu X, et al . Conductive membranes of eva filled with carbon black and carbon nanotubes for flexible energy-storage devices[J]. Journal of Materials Chemistry A ,2013,1(3):505. [42] Huang Jiaqi(黄佳琦),Zhang Qiang(张强),Jin Yong(金涌),Wei Fei(魏飞). sp 2 Nanocarbon materials for lithium ion battery applications[J]. Energy Storage Science and Technology (储能科学与技术),2012,1(1):1-12. [43] Palacin M R. Recent advances in rechargeable battery materials:A chemist's perspective[J]. Chemical Society Reviews ,2009,38(9):2565-2575. [44] Kim S W,Seo D H,Gwon H, et al . Fabrication of FeF 3 nanoflowers on cnt branches and their application to high power lithium rechargeable batteries[J]. Advanced Materials ,2010,22(46):5260-5264. [45] Li N,Chen Z P,Ren W C, et al . Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences of the United States of America ,2012,109(43):17360-17365. [46] Zhou G,Wang D W,Hou P X, et al . A nanosized Fe 2 O 3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries[J]. Journal of Materials Chemistry ,2012,22(34):17942-17946. [47] Zhou G,Li L,Zhang Q, et al . Octahedral Co 3 O 4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(15):5582-5587. [48] Noerochim L,Wang J Z,Chou S L, et al . Free-standing single-walled carbon nanotube/SnO 2 anode paper for flexible lithium-ion batteries[J]. Carbon ,2012,50(3):1289-1297. [49] Elazari R,Salitra G,Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials ,2011,23(47):5641-5644. [50] Jin J,Wen Z,Ma G, et al . Flexible self-supporting graphene-sulfur paper for lithium sulfur batteries[J]. RSC Advances ,2013,3(8):2558. [51] Wang D W,Zeng Q C,Zhou G M, et al . Carbon/sulfur composites for Li-S batteries:Status and prospects[J]. Journal of Materials Chemistry A ,2013,1,doi:10.1039/C1033TA11045A. [52] Zhao M Q,Liu X F,Zhang Q, et al . Graphene/single-walled carbon nanotube hybrids:One-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano ,2012,6(12):10759-10769. [53] Zhang S M,Zhang Q,Huang J Q, et al . Composite cathodes containing SWCNT@S coaxial nanocables:Facile synthesis,surface modification,and enhanced performance for Li-ion storage[J]. Particle & Particle Systems Characterization ,2013,30(2):158-165. [54] Rao M,Song X,Liao H, et al . Carbon nanofiber-sulfur composite cathode materials with different binders for secondary Li/S cells[J]. Electrochimica Acta ,2012,65:228-233. [55] Zhou G,Wang D W,Li F, et al . A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science ,2012,5(10):8901. [56] Arbizzani C,Gabrielli G,Mastragostino M. Thermal stability and flammability of electrolytes for lithium-ion batteries[J]. Journal of Power Sources ,2011,196(10):4801-4805. [57] Jiang J,Li Y,Liu J, et al . Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials ,2012,24(38):5166-5180. [58] Park S,Vosguerichian M,Bao Z A. A review of fabrication and applications of carbon nanotube film-based flexible electronics[J]. Nanoscale ,2013,5(5):1727-1752. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[5] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[6] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[7] | Jingchao SHEN, Jian HU, Jingliang HU, Ticao JIAO, Xiaomei QI, Yunpeng WANG, Di YU, Shangqi LIU. Parameter adaptive backstepping control of bidirectional DC-DC converter for DC microgrid energy storage device [J]. Energy Storage Science and Technology, 2022, 11(5): 1512-1522. |
[8] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[9] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[10] | Yuyu TIAN, Jing LIU, Xuefeng SONG, Yu QIU, Liping ZHAO, Peng ZHANG, Yanting SUN, Lian GAO. PPy-MoS2 porous network flexible electrodes: Kinetic analysis of electrochemical behavior [J]. Energy Storage Science and Technology, 2022, 11(4): 1141-1148. |
[11] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[12] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[13] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[14] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[15] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||