Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (3): 179-190.doi: 10.3969/j.issn.2095-4239.2014.03.001
• Invited papers • Next Articles
XU Zhiguo, ZHAO Changying, JI Yunan, ZHAO Yao
Received:
2014-04-20
Online:
2014-05-01
Published:
2014-05-01
CLC Number:
XU Zhiguo, ZHAO Changying, JI Yunan, ZHAO Yao. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190.
[1] Sharma A,Tyagi V,Chen C R,Buddhi D. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Review ,2009,13(2):318-345. [2] Telkes M,Raymond E. Storing solar heat in chemicals A report on the dover house[J]. Heat Vent ,1949,46(11):80-86. [3] Kuznik F,David D,Johannes K,Roux J. A review on phase change materials integrated in building walls[J]. Renewable and Sustainable Energy Reviews ,2011,15(1):379-391. [4] Nagano K,Takeda S,Mochida T,Shimakura K,Nakamura T. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage Heat response in small scale experiments[J]. Energy and Buildings ,2006,38:436-446. [5] Liu M,Saman W,Bruno F. Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications[J]. Applied Thermal Engineering ,2011,31:2340-2347. [6] Kandasamy R,Wang X Q,Mujumdar A S. Application of phase change materials in thermal management of electronics[J]. Applied Thermal Engineering ,2007,27:2822-2832. [7] Liu M,Wasim S,Frank B. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews ,2012,16:2118-2132. [8] Xie Gang(谢刚). 熔融盐理论与应用[M]. Beijing:Metallurgical Industry Press,1998. [9] Cui Haiting(崔海亭),Yuan Xiugan(袁修干),Xing Yuming(邢玉明). Parametric study of heat receiver mass in space solar dynamic system[J]. Journal of Aerospace Power (航空动力学报),2003,18(6):819-823. [10] Xing Yuming(邢玉明),Cui Haiting(崔海亭),Yuan Xiugan(袁修干). Numerical simulations of high temperature molten salt phase change heat storage system[J]. Journal of Beijing University of Aeronautics and Astronautics (北京航空航天大学学报),2002,28(3):295-297. [11] 于建国,宋兴福,潘惠琴.(LiNO 3 -KNO 3 -NaNO 3 -NaNO 2 )混合熔盐及制备方法:中国,1263924A[P]. 2000-08-23. [12] 丁静,魏小兰,彭强,等 . 一种熔融盐传热蓄热介质及其制备方法:中国,l01050355[P]. 2007-10-10. [13] Kourkova L,Sadovska G. Heat capacity, enthalpy and entropy of Li 2 CO 3 at 303.5-563.15K[J]. Themochimica Acta , Short Communication , 2007,452:80-81. [14] 魏小兰,丁静,廖敏,等 . 一种碳酸熔融盐传热蓄热介质及其制备方法与应用:中国,l01289612[P]. 2008-10-22. [15] 丁静,魏小兰,杨建平,等. 一种含锂碳酸熔融盐传热蓄热介质及其制备方法与应用:中国,l01508888[P]. 2009-08-19. [16] Sharma A,Tyagi V V,Chen C R, et al . Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews ,2009,13(2):318-345. [17] Wang Yongjun(王永军),Wang Shenglin(王胜林). Preparation and characterization of Na 2 SO 4 /MgO composite phase change material for thermal energy storage[J]. Energy for Metallurgical Industry (冶金能源),2011,30(3):42-45. [18] Pacheco J,Showalter S,Kolb W. Development of a molten salt thermocline thermal storage system for parabolic trough plants[J]. ASME J. Solar Energy Engineering ,2002,124(2):153-159. [19] Doug B.Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants[J]. Solar Energy Engineering ,2005,172(2):109-116. [20] Sun Liping(孙李平). Experimental research on molten salt corrosion property and optimization[D]. Beijing:Beijing University of Technology,2007. [21] Tamme R,Struber C. Energy storage development for solar thermal process[J]. Journal of Solar Energy ,1991,12 :386. [22] Tamme R,Taut U,Struber C. Advanced regenerator Media for industrial and solar thermal application[C]//New York: 25th IECEC Proceedings,1990:1452. [23] Williams D F,Wilson D F,Toth L M, et al . The selectness of high-temperature phase change material Al-Si alloy and experimental research on the container[J]. Acta Energiae Solaris Sinica (太阳能学报),2006,27(1):36-39. [24] Liu Jing(刘靖),Wang Xin(王馨),Zeng Daben(曾大本), et al . Research on Molten Fluorides as High Temperature Heat[C]//New Orleans:Transfer Agents,2003:16-20. [25] Goods S H,Branshaw R W. Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts[J]. Journal of Materials Engineering and Performance ,2004,13(1):78-87. [26] Cabeza L F,Illa J,Roca J, et al . Immersion corrosion tests on metal salt hydrate pairs used for latent heat storage in the 32 36 ℃ temperature range[J]. Mater. Corros .,2001,52(2):140-146. [27] Sun J Q,Zhang R Y,Liu Z P,et al. The thermal reliability test of Al-34%Mg-6% Zn alloy as latent heat storage material And corrosion of the metal with the new one to thermal cycling[J]. Energy Conversion Management ,2007 (48):619 [28] Li Huipeng(李辉鹏),Zhang Renyuan(张仁元),Mao Lingbo(毛凌波), et al . A tentative study of the heat storage properties of Al-Si alloy[J]. Journal of Guangdong University of Technology (广州工业大学学报),2009,4:37. [29] Sehn Xuezhong(沈学忠). 铝硅二元共晶合金储热循环稳定性及其对容器的表面处理研究[D]. Guangzhou:Guangdong University of Technology,2007. [30] Gokon N,Nakano D,Inuta S, et al . High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes[J]. Solar Energy ,2008,82(12):1145-1153. [31] Zhang P,Song L,Lu H D, et al. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/ chlorinated paraffin/antimony trioxide as a flame retardant phase change material[J]. Energy Conversion and Management ,2010, 51(12):2733-2737. [32] Lopez J,Gustavo C,Barrio E P D, et al. Confined melting in deformable porous media:A first attempt to explain the graphite/salt composites behaviour[J]. International Journal of Heat and Mass Transfer ,2010,53(5-6):1195-1207. [33] Steinmann W D,Tamme R. Latent heat storage for solar steam systems[J]. Journal of Solar Energy Engineering ,2008,130(1):011004. [34] Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2012,55(13-14):3618-3632. [35] Zhao C Y,Lu W,Tian W, et al. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy ,2010,84(8):1402-1412. [36] Tian Y,Zhao C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy ,2011,36(9):5539-5546. [37] Wu Z G,Zhao C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy ,2011,85(7):1371-1380. [38] Zhao C Y,Wu Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells ,2011,95(2):636-643. [39] Zhou D,Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering ,2011,31(5):970-977. [40] Mettawee E B S,Assassa G M R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy ,2007,81(7):839-845. [41] Fukai J,Hamada Y,Morozumi Y, et al . Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes:Experiments and modeling[J]. International Journal of Heat and Mass Transfer ,2003,46(23):4513-4525. [42] Elgafy A,Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon ,2005,43(15):3067-3074. [43] Agyenim F,Eamesb P,Smytha M, et al. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins[J]. Solar Energy ,2009,83(9):1509-1520. [44] Al-Abidi A A,Mat S,Sopian K, et al . Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering ,2013,53(1):147-156. [45] Tay N H S,Bruno F,Belusko M, et al. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD[J]. Applied Energy ,2013,104:79-86. [46] Adinberg R,Zvegilsky D,Epstein M, et al. Heat transfer efficient thermal energy storage for steam generation[J]. Energy Conversion and Management ,2010,51(1):9-15. [47] Shabgard H,Sharifi N,Faghri A, et al. High temperature latent heat thermal energy storage using heat pipes[J]. International Journal of Heat and Mass Transfer ,2010,53(15-16):2979-2988. [48] Nithyanandam K,Pitchumani R. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes[J]. International Journal of Heat and Mass Transfer ,2011,54(21-22):4596-4610. [49] Gao D,Chen Z Q,Shi M H, et al. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method[J]. Science China Technological Sciences ,2010,53(11):3079-3087. [50] Tao Y,He Y. Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary[J]. Applied Energy ,2011,88(11):4172-4179. [51] Maroufi A,Aghanajafi C. Analysis of conduction-radiation heat transfer during phase change process of semitransparent materials using lattice Boltzmann method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer ,2013,116:145-155. [52] Miranda F J,Johannes K,Kuznik F, et al . Melting with convection and radiation in a participating phase change material[J]. Applied Energy ,2013,109:454-461. [53] Jourabian M. Lattice Boltzmann simulation of melting phenomenon with natural convection from an eccentric annulus[J]. International Journal of Thermal Science ,2013,4:12. [54] Miller W,Succi S,Mansutti D. Lattice Boltzmann model for anisotropic liquid-solid phase transition[J]. Physical Review Letters ,2001,86(16):3578. [55] Boettinger W,Warren J A,Beckermann C, et al. Phase-field simulation of solidification[J]. Annual Review of Materials Research ,2002,32(1):163-194. [56] Han X,Tian Y,Zhao C. An effectiveness study of enhanced heat transfer in phase change materials (PCMs)[J]. International Journal of Heat and Mass Transfer ,2013,60:459-468. [57] Tan L,Zabaras N. A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods[J]. Journal of Computational Physics ,2006,211(1):36-63. [58] Mencinger J. Numerical simulation of melting in two-dimensional cavity using adaptive grid[J]. Journal of Computational Physics ,2004,198(1):243-264. [59] Javierre E,Vuik C,Wormolen F J, et al. A comparison of numerical models for one-dimensional Stefan problems[J]. Journal of Computational and Applied Mathematics ,2006,192(2):445-459. [60] Chatterjee D,Chakraborty S. A hybrid lattice Boltzmann model for solid-liquid phase transition in presence of fluid flow[J]. Physics Letters A ,2006,351(4):359-367. [61] Lu W,Zhao C,Tassou S. Thermal analysis on metal-foam filled heat exchangers. Part I:Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer ,2006,49(15):2751-2761. [62] Zhao C,Lu T J,Hodson H P, et al. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams[J]. Materials Science and Engineering : A ,2004,367(1):123-131. [63] Zhao C,Lu T,Hodson H. Thermal radiation in ultralight metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2004,47(14):2927-2939. [64] Zhao C,Kim T,Lu T G, et al . Thermal transport in high porosity cellular metal foams[J]. Journal of Thermophysics and Heat Transfer ,2004,18(3):309-317. [65] Zhao C,Lu W,Tassou S. Thermal analysis on metal-foam filled heat exchangers. Part II:Tube heat exchangers[J]. International Journal of Heat and Mass Transfer ,2006,49(15):2762-2770. [66] Zhao C,Lu T,Hodson H. Natural convection in metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2005,48(12):2452-2463. [67] Zhao C Y,Lu W,Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy ,2010,84(8):1402-1412. [68] Zhao C Y,Tassou S,Lu T. Analytical considerations of thermal radiation in cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2008,51(3):929-940. [69] Zhou D,Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering ,2011,31(5):970-977. [70] Zhao C Y,Wu Z. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells ,2011,95(2):636-643. [71] Dardis O,Mccloskey J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media[J]. Physical Review E ,1998,57(4):4834. [72] Spaid M A,Phelan J F R. Lattice Boltzmann methods for modeling microscale flow in fibrous porous media[J]. Physics of Fluids ,1997,9:2468. [73] Succi S,Foti E,Higuera F. Three-dimensional flows in complex geometries with the lattice Boltzmann method[J]. Europhysics Letters ,1989,10(5):433. [74] Farid M M,Kanzawa A. Thermal performance of a heat storage module using PCMs with different melting temperatures:Mathematical modeling[J]. ASME Journal of Solar Energy Engineering ,1989,111(2):152-157. [75] Chinnapandian M,Pandiyarajan V,Velraj R. A study on the thermodynamic analysis of a cascaded latent heat storage system over the single storage tank system for diesel engine waste heat recovery[J]. International Journal of Energy ,2012,11(3):349-370. [76] Shabgard H,Robak C W,Bergman T L, et al . Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications[J]. Solar Energy ,2012,86(3):816-830. [77] Michels H,Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants[J]. Solar Energy ,2007,81(6):829-837. [78] Kousksou T,Strug F,Lasvignottes J C, et al . Second law analysis of latent thermal storage for solar system[J]. Solar Energy Materials and Solar Cells ,2007,91(14):1275-1281. [79] Jegadheeswaran S,Pohekar S D,Kousksou T. Exergy based performance evaluation of latent heat thermal storage system:A review[J]. Renewable & Sustainable Energy Reviews ,2010,14(9):2580-2595. [80] Li Y Q,He Y L,Wang Z F, et al . Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics[J]. Renewable Energy ,2012,39(1):447-454. [81] Gong Z X,Mujumdar A S. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials[J]. Applied Thermal Engineering ,1997,17(11):1067-1083. [82] Gong Z X,Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering ,1996,16(10):807-815. [83] Gong Z X,Mujumdar A S. Finite element analysis of a multistage latent heat thermal storage system[J]. Numerical Heat Transfer,Part A : Applications ,1996,30(7):669-684. [84] Gong Z X,Mujumdar A S. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials[J]. International Journal of Heat and Mass Transfer ,1996,39(4):725-733. [85] Watanabe T,Kanzawa A. Second law optimization of a latent heat storage system with PCMS having different melting points[J]. Heat Recovery Systems and CHP ,1995,15(7):641-653. [86] Farid M M,Kim Y,Kansawa A. Thermal performance of a heat storage module using PCM s with different melting temperature: Experimental[J]. ASME Journal of Solar Energy Engineering ,1990,112(2):125-131. [87] Watanabe T,Kikuchi H,Kanzawa A. Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures[J]. Heat Recovery Systems & CHP ,1993. 13(1):57-66. [88] Tian Y,Zhao C. Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES)[J]. International Journal of Heat and Mass Transfer ,2013,58(1):86-96. [89] Farid M M,Kanzawa A. Thermal performance of a heat storage module using PCMs with different melting temperatures:Mathematical modeling, transactions of the ASME[J]. Journal of Solar Energy Engineering ,1989,111(2):152-157. [90] Farid M M,Kim Y,Kansawa A, et al . Thermal performance of a heat storage module using PCMs with different melting temperature:Experimental[J]. ASME Journal of Solar Energy Engineering ,1990,112(2):125-131. [91] Watanabe T,Kanzawa A. Second law optimization of a latent heat storage system with PCMS having different melting points[J]. Heat Recovery Systems and CHP ,1995,15(7):641-653. [92] Gong Z X,Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering ,1996,16(10):807-815. [93] Gong Z X,Mujumdar A S. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials[J]. International Journal of Heat and Mass Transfer ,1996,39(4):725-733. [94] Gong Z X,Mujumdar A S. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials[J]. Applied Thermal Engineering ,1997,17(11):1067-1083. [95] El-Dessouky H,Al-Juwayhel F. Effectiveness of a thermal energy storage system using phase-change materials[J]. Energy Conversion Management ,1997,38:601-617. [96] Li Y Q,He Y L,Wang Z F, et al . Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics[J]. Renewable Energy ,2012,39(1):447-454. [97] Shabgard H,Robak C W,Bergman T L, et al. Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications[J]. Solar Energy ,2012,86(3):816-830. [98] Yang Lei(杨磊),Zhang Xiaosong(张小松). Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal (化工学报),2012,63(4):1032-1037. [99] Hu Peng(胡芃),Lu Dajie(卢大杰),Zhao Panpan(赵盼盼),Chen Zeshao(陈则韶). Thermodynamic analysis on optimum phase change temperature for multiple phase change materials[J]. CIESC Journal (化工学报),2013,64(7):2323-2327. [100] Guo Zengyuan(过增元),Liang Xingang(梁新刚),Zhu Hongye(朱宏晔). -描述物体传递热量能力的物理量[J]. Progress in Natural Science : Materials International (自然科学进展),2006,16(10):1288-1296. [101] Guo Zengyuan(过增元). New physical quantities in heat[J]. Journal of Engineering Thermophysics (工程热物理学报),2008,29(1):112-114. [102] Guo Z Y,Zhu H Y,Liang X G. Entransy-aphysical quantity describing heat heat transfer ability[J]. International Journal of Heat Mass Transfer ,2007,50(13):2545-2556 [103] Qian S,Huang L,Aute V, et al . Applicability of entransy dissipation based thermal resistance for design optimization of two-phase heat exchangers[J]. Applied Thermal Engineering ,2013,55:140-148. [104] Xia Shaojun(夏少军),Chen Lingen(陈林根),Sun Fengrui(孙丰瑞). Liquid-solid phase change thermal dissipation is minimized plot[J]. Sci. China : Tech. Sci. (中国科学:科学技术),2010,40(12):1521-1529. [105] Chen Yanlong(陈彦龙),Wang Xin(王馨),Teng Xiaoguo(滕小果). Optimal phase change temperature based on entransy and entropy generation analyses[J]. Journal of Engineering Thermophysics (工程热物理学报),2012,33(9):1597-1600. [106] Cui Haiting(崔海亭),Wang Zhenhui(王振辉),Guo Yanshu(郭彦书), et al . Experimental study on heat performance of new phase change thermal energy storagy unit[J]. Acta Energiae Solaris Sinica (太阳能学报),2009,30(10):1188-1192. [107] Ma Guiyang(马贵阳),Zheng Ping(郑平),Gong Zhili(龚智立). Manufacturing of phase change heat accumulator and exothermic heat capability test[J]. Journal of Liaoning University of Petroleum & Chemical Technology (辽宁石油化工大学学报),2005,25(4):55-57. [108] Liu Jincai(刘金才). Manufacture of phase change accumulator equipment for reclamation of afterheat[J]. Journal of Petrochemical Universities (石油化工高等学校学报),2005,18(3):72-75. [109] Xu Feng(徐峰),Sun Yong(孙勇),Shi Yongjiang(师涌江),Yang Guichun(杨桂春). The heat accumulating characteristics of the phase change material energy storage with helical coil[J] . Journal of Hebei Institute of Architecture and Civil Engineering (河北建筑工程学院学报),2013,31(1):56-62. [110] Wu Bin(吴斌),Xing Yuming(邢玉明). Numerical simulation and experimental study of a phase change heat accumulation system applicable for waste heat recovery[J]. Journal of Engineering for Thermal Energy and Power (热能动力工程),2011,26(1):53-57. [111] Li Y Q,He Y L,Song H J,Xu C,Wang W W. Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials[J]. Renewable Energy ,2013,59:92-99. [112] Vyshak N R,Jilani G. Numerical analysis of latent heat thermal energy storage system[J]. Energy Conversion and Management, 2007,48:2161-2168. [113] Agyenim F,Eames P,Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multi-tube heat transfer array[J]. Renewable Energy ,2010,35:198-207. [114] Gong Z X,Mujumdar A S. Finite-element analysis of cyclic heat transfer in a shell -and -tube latent heat energy storage exchanger[J]. Applied Thermal Engineering ,1997,17:1775-1785. [115] Yu Wanfu(余晚福),Zhang Zhengguo(张正国),Wang Shiping(王世平). Combination wind mechanical-electrical transducers[J]. New Energy (新能源),2000,22(2):34-45. [116] Enibe S O. Thermal analysis of a natural circulation solar air heater with phase change material energy storage[J]. Renewable Energy ,2003,28:2269-2299. [117] Xing Yuming(邢玉明),Yuan Xiugan(袁修干). Experimental investigation of thermal energy storage container of phase change materials for space station[J]. Journal of Aerospace Power (航空动力学报),2001,16(1):75-81. |
[1] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[2] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[3] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[4] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
[5] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[6] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[7] | Dehou XU, Xuezhi ZHOU, Yujie XU, Zhitao ZUO, Haisheng CHEN. Performance law of a new composite seasonal underground thermal storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. |
[8] | Yanfeng TIAN, Xinxin ZHAO, Qitong FU, Zhe WANG, Xuzhang ZHAO. Structure analysis of high temperature heat storage conductor based on thermal-electricity-magnetic field coupling [J]. Energy Storage Science and Technology, 2021, 10(3): 1051-1059. |
[9] | Caimei YU, Xuelai ZHANG, Weisan HUA. Research progress of sodium sulfate decahydrate phase changematerial [J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024. |
[10] | Xudong WANG, Zhao YIN, Chang LIU, Hualiang ZHANG, Yujie XU, Haisheng CHEN, Xuezhi ZHOU. Application and prospect of energy storage technology in military field [J]. Energy Storage Science and Technology, 2020, 9(S1): 52-61. |
[11] | Mingjun DU, Jiaqiang JING, Zhigui ZHANG, Jinshuai LI, Ran YIN. Study on key technologies of solar energy photothermal conversion for heavy oil thermal recovery [J]. Energy Storage Science and Technology, 2020, 9(S1): 62-69. |
[12] | Ziyi WANG, Yujie XU, Xuezhi ZHOU, Haisheng CHEN, Young SHENG, Dehou XU, Youqiang LINGHU, Jie DING. Storage and release characteristics of seasonal composite thermal storage system [J]. Energy Storage Science and Technology, 2020, 9(6): 1837-1846. |
[13] | SUN Shoubin, YAO Hua, LIU Changpeng, HUANG Yun, MA Guangyu, ZHANG Tianfu, WANG Xiangfeng. Characteristics analysis of the phase change thermal storage equipment for medium and low temperature flue gas from steel industry [J]. Energy Storage Science and Technology, 2020, 9(3): 730-734. |
[14] | XU Zhong, HOU Jing, WAN Shuquan, LI Jun, WU Enhui, LIU Qianshu, GAN Xin. Preparation and thermal properties of metal foam/ paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. |
[15] | MA Meixiu, LI Zhendong, KANG Wei, ZENG Hongtao, SU Tieshan, HU Ronghui, HU Xiao. Numerical simulation and verification of high temperature phase change thermal storage electric heater [J]. Energy Storage Science and Technology, 2020, 9(1): 88-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||