Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (3): 262-282.doi: 10.3969/j.issn.2095-4239.2014.03.012
• Expert lectures • Previous Articles Next Articles
LIU Yali, WU Jiaoyang, LI Hong
Received:
2014-03-31
Online:
2014-05-01
Published:
2014-05-01
CLC Number:
LIU Yali, WU Jiaoyang, LI Hong. Fundamental scientific aspects of lithium ion batteries (Ⅸ)----Nonaqueous electrolyte materials[J]. Energy Storage Science and Technology, 2014, 3(3): 262-282.
[1] Tobias C W. Electrochemical studies in cyclic carbonate esters[J]. Journal of the Electrochemical Society ,1957,104(8):C171. [2] Eineli Y,Thomas S R,Koch V R. New electrolyte system for Li-ion battery[J]. Journal of the Electrochemical Society ,1996, 143(9):L195-L197. [3] Ma S H,Li J,Jing X B, et al . A study of cokes used as anodic materials in lithium ion rechargeable batteries[J]. Solid State Ionics ,1996,86(8):911-917. [4] Nishi Y,Azuma H,Omaru A. Non-aq. electrolyte cell having improved cycling characteristics|by close control of the interlayer spacings of the carbonaceous anode, the true density and the temp. at which exothermic peaks appear:EP,357001-A1; JP,2066856-A; US,4959281-A; EP,357001-B1; DE,68919943-E; JP,2674793-B2; JP,10003948-A; JP,2812324-B2; KR,9711198-B1[P/OL]. 1990-03-07. http://www.google.com/patents/US4959281. [5] Fong R,Vonsacken U,Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells[J]. Journal of the Electrochemical Society ,1990,137(7):2009-2013. [6] Guyomard D,Tarascon J M. Rechargeable Li 1+ x Mn 2 O 4 /carbon cells with a new electrolyte-composition-potentiostatic studies and application to practical cells[J]. Journal of the Electrochemical Society ,1993,140(11):3071-3081. [7] Tarascon J M,Guyomard D. New electrolyte compositions stable over the 0 V to 5 V voltage range and compatible with the Li 1+ x Mn 2 O 4 carbon Li-ion cells[J]. Solid State Ionics ,1994, 69(3-4):293-305. [8] Dahn J R,Vonsacken U,Juzkow M W, et al . Rechargeable LiNiO 2 carbon cells[J]. Journal of the Electrochemical Society ,1991,138(8):2207-2211. [9] Ohzuku T,Iwakoshi Y,Sawai K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. Journal of the Electrochemical Society ,1993, 140(9):2490-2498. [10] Koch V R,Young J H. Stability of secondary lithium electrode in tetrahydrofuran-based electrolytes[J]. Journal of the Electrochemical Society ,1978,125(9):1371-1377. [11] Desjardins C D,Cadger T G,Salter R S, et al . Lithium cycling performance in improved lithium hexafluoroarsenate 2-methyl tetrahydrofuran electrolytes[J]. Journal of the Electrochemical Society ,1985,132(3):529-533. [12] Abraham K M,Goldman J L,Natwig D L. Characterization of ether electrolytes for rechargeable lithium cells[J]. Journal of the Electrochemical Society ,1982,129(11):2404-2409. [13] Yoshimatsu I,Hirai T,Yamaki J. Lithium electrode morphology during cycling in lithium cells[J]. Journal of the Electrochemical Society ,1988,135(10):2422-2427. [14] Ue M,Mori S. Mobility and ionic association of lithium-salts in a propylene carbonate-ethyl methyl carbonate mixed-solvent[J]. Journal of the Electrochemical Society ,1995,142(8): 2577-2581. [15] Methlie I G J. Electric current producing cell:US, 3415687A[P/OL]. 1968. [16] Hu Y S,Li H,Huang X J, et al . Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries[J]. Electrochemistry Communications ,2004,6(1): 28-32. [17] Ozawa K. Lithium-ion rechargeable batteries with LiCoO 2 and carbon electrodes:The LiCoO 2 /C system[J]. Solid State Ionics ,1994,69(3-4):212-221. [18] Xu K,Zhang S S,Jow T R, et al . LiBOB as salt for lithium-ion batteries:A possible solution for high temperature operation[J]. Electrochemical and Solid State Letters ,2002,5(1): A26-A29. [19] Kelley B,Northrup M,Hurley P D. Effect of riboflavin and pteroylglutamic acid on growth and white cell production of rats[J]. Proceedings of the Society for Experimental Biology and Medicine ,1951,76(4):804-806. [20] Hongbo H,Jun G,Zhou Z B, et al . Lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications ,2011,13(3):265-268. [21] Murugavel S. Origin of non-Arrhenius conductivity in fast ion conducting glasses[J]. Physical Review B ,2005,72(13): 134204-134213. [22] Gu G Y,Bouvier S,Wu C, et al . 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries[J]. Electrochimica Acta ,2000,45(19):3127-3139. [23] Doyle M,Fuller T F,Newman J. The importance of the lithium ion transference number in lithium polymer cells[J]. Electrochimica Acta ,1994,39(13):2073-2081. [24] Fujinami T,Buzoujima Y. Novel lithium salts exhibiting high lithium ion transference numbers in polymer electrolytes[J]. Journal of Power Sources ,2003,119:438-441. [25] Liaw B Y,Roth E P,Jungst R G, et al . Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells[J]. Journal of Power Sources ,2003,119:874-886. [26] Tsunashima K,Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes[J]. Electrochemistry Communications ,2007,9(9): 2353-2358. [27] Matsumoto H,Sakaebe H,Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and. asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte[J]. Journal of Power Sources ,2005, 146(1-2):45-50. [28] Ding M S,Jow T R. Conductivity and viscosity of PC-DEC and PC-EC solutions of LiPF 6 [J]. Journal of the Electrochemical Society ,2003,150(5):A620-A628. [29] Webber A. Conductivity and viscosity of solutions of LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, and their mixtures[J]. Journal of the Electrochemical Society ,1991,138(9):2586-2590. [30] Shu Z X,Mcmillan R S,Murray J J. Electrochemical intercalation of lithium into graphite[J]. Journal of the Electrochemical Society ,1993,140(4):922-927. [31] Jean M,Chausse A,Messina R. Analysis of the passivating layer and the electrolyte in the system:Petroleum coke/solution of LiCF 3 SO 3 in mixed organic carbonates[J]. Electrochimica Acta ,1998,43(12-13):1795-1802. [32] Zheng Jieyun(郑杰允),Li Hong(李泓). Fundamental scientific aspects of lithium batteries (V) Interfaces[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(5):503-513. [33] Zheng Honghe(郑洪河). 锂离子电池电解质[M]. Beijing:Chimecal Industry Press,2006. [34] Thomas M,Bruce P G,Goodenough J B. AC impedance analysis of polycrystalline insertion electrodes:Application to Li 1- x CoO 2 [J]. Journal of the Electrochemical Society ,1985,132(7): 1521-1528. [35] Guyomard D,Tarascon J M. The carbon Li 1+ x Mn 2 O 4 system[J]. Solid State Ionics ,1994,69(3-4):222-237. [36] Tarascon J M,Guyomard D. The Li 1+ x Mn 2 O 4 /C rocking-chair system:A review[J]. Electrochimica Acta ,1993,38(9): 1221-1231. [37] Aurbach D,Markovsky B,Levi M D, et al . New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources ,1999,81:95-111. [38] Ostrovskii D,Ronci F,Scrosati B, et al . Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: Spontaneous reactions at the electrode-electrolyte interface investigated by FTIR[J]. Journal of Power Sources ,2001, 103(1):10-17. [39] Edstrom K,Gustafsson T,Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta ,2004, 50(2-3):397-403. [40] Liu N,Li H,Wang Z X, et al . Origin of solid electrolyte interphase on nanosized LiCoO 2 [J]. Electrochemical and Solid State Letters ,2006,9(7):A328-A331. [41] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev. ,2004,104(10): 4303-4317. [42] Arora P,White R E,Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society ,1998,145(10):3647-3667. [43] Campion C L,Li W T,Lucht B L. Thermal decomposition of LiPF 6 -based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2005,152(12):A2327-A2334. [44] Maleki H,Deng G P,Anani A, et al . Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society ,1999,146(9):3224-3229. [45] Ravdel B,Abraham K M,Gitzendanner R, et al . Thermal stability of lithium-ion battery electrolytes[J]. Journal of Power Sources ,2003,119:805-810. [46] Sloop S E,Pugh J K,Wang S, et al . Chemical reactivity of PF 5 and LiPF 6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid State Letters ,2001,4(4): A42-A44. [47] Yang H,Zhuang G V,Ross P N. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6 [J]. Journal of Power Sources ,2006,161(1):573-579. [48] Blomgren G E. Electrolytes for advanced batteries[J] . Journal of Power Sources ,1999,81:112-118. [49] Zhang X,Ross P N,Kostecki R, et al . Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles[J]. Journal of the Electrochemical Society , 2001,148(5):A463-A470. [50] Zhuang Quanchao(庄全超),Wu Shan(武山),Liu Wenyuan(刘文元), et al . The research of organic electrolyte solutions for Li-ion batteries[J]. Electrochemistry (电化学),2001,4(7):403-412. [51] Fry A J. Synthetic Organic Electrochemistry[M]. London:John Wiley Press,1989. [52] Aurbach D. Nonaqueous Electrochemistry[M]. New York:Marcel-Dekker Press,1999. [53] Harris W S. Electrochemical studies in cyclic esters[D] California:University of California,1958. [54] Sugeno N,Anzai M,Nagaura T. Non-aq. electrolyte secondary battery-has carbon@material negative electrode,lithium complex oxide,positive electrode and mixed solvent electrolyte:EP,486950-A; EP,486950-A1; CA,2055305-A; JP,4184872-A; JP,4280082-A; US,5292601-A; EP,486950-B1; DE,69103384-E; JP,3079613-B2; JP,3089662-B2; JP,2000268864-A; CA,2055305-C; JP,3356157-B2 [P/OL]. 1992-05-27. http://www.thomsonpatentstore.net/ portal/servlet/DIIDirect?CC=EP&PN=486950&DT=A&SrcAuth=Wila&Token=uxTOe.GiY2bHu08Rjd6xHXjcM_VTwlq3vOi381uNAPAwH.cAlHY8oLoVC1_0DHp7WmziB3PJWDsx_TyLKY5NC3EJugKKbcHx4Ohk6W_mhI0. [55] Selim R,Bro P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte[J]. Journal of the Electrochemical Society ,1974,121(11):1457-1459. [56] Rauh R D,Brummer S B. Effect of additives on lithium cycling in propylene carbonate[J]. Electrochimica Acta ,1977,22(1): 75-83. [57] Rauh R D,Reise T F,Brummer S B. Efficiencies of cycling lithium on a lithium substrate in propylene carbonate[J]. Journal of the Electrochemical Society ,1978,125(2):186-190. [58] Aurbach D,Daroux M L,Faguy P W, et al . Identification of surface-films formed on lithium in propylene carbonate solutions[J]. Journal of the Electrochemical Society ,1987,134(7): 1611-1620. [59] Chung G C,Kim H J,Yu S I, et al . Origin of graphite exfoliation:An investigation of the important role of solvent cointercalation[J]. Journal of the Electrochemical Society ,2000, 147(12):4391-4398. [60] Newman G H,Francis R W,Gaines L H, et al . Hazard investigations of LiClO 4 -dioxolane electrolyte[J]. Journal of the Electrochemical Society ,1980,127(9):2025-2027. [61] Xu K,Ding M S,Jow T R. Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors[J]. Journal of the Electrochemical Society ,2001,148(3):A267-A274. [62] Elliott W. Contract NAS 3-6015 (N 65-11518)[R]. 1964. [63] Pistoia G,Derossi M,Scrosati B. Study of behavior of ethylene carbonate as a nonaqueous battery solvent[J]. Journal of the Electrochemical Society ,1970,117(4):500-502. [64] Abraham K M,Foos J S,Goldman J L. Long cycle-life secondary lithium cells utilizing tetrahydrofuran[J]. Journal of the Electrochemical Society ,1984,131(9):2197-2199. [65] Geronov Y,Puresheva B,Moshtev R V, et al . Rechargeable compact Li cells with Li x Cr 0.9 V 0.1 S 2 and Li 1+ x V 3 O 8 cathodes and ether-based electrolytes[J]. Journal of the Electrochemical Society ,1990,137(11):3338-3344. [66] Takami N,Ohsaki T,Inada K. The impedance of lithium electrodes in LiPF 6 -based electrolytes[J]. Journal of the Electrochemical Society ,1992,139(7):1849-1854. [67] Yamaura J,Ozaki Y,Morita A, et al. High-voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material[J]. Journal of Power Sources ,1993, 43(1-3):233-239. [68] Zhang S S,Liu Q G,Yang L L. Polyacene as an anode in lithium ion batteries[J]. Journal of the Electrochemical Society ,1993, 140(7):L107-L108. [69] Guyomard D,Tarascon J M. Li metal-free rechargeable LiMn 2 O 4 /carbon cells:Their understanding and optimization[J]. Journal of the Electrochemical Society ,1992,139(4): 937-948. [70] Aurbach D,Eineli Y,Markovsky B, et al . The study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteriesⅡ. Graphite-electrodes[J]. Journal of the Electrochemical Society ,1995,142(9):2882-2890. [71] Eineli Y,Thomas S R,Koch V, et al . Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries[J]. Journal of the Electrochemical Society ,1996,143(12):L273-L277. [72] Campbell S A,Bowes C,Mcmillan R S. The electrochemical- behavior of tetrahydrofuran and propylene carbonate without added electrolyte[J]. Journal of Electroanalytical Chemistry ,1990, 284(1):195-204. [73] Laoire C O,Mukerjee S,Plichta E J, et al . Rechargeable lithium/tegdme-LiPF 6 /O 2 battery[J]. Journal of the Electrochemical Society ,2011,158(3):A302-A308. [74] Jung H G,Hassoun J,Park J B, et al . An improved high-performance lithium-air battery[J]. Nature Chemistry , 2012,4(7):579-585. [75] Li L F,Lee H S,Li H, et al . New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors[J]. Journal of Power Sources ,2008,184(2):517-521. [76] Xie B,Lee H S,Li H, et al . New electrolytes using Li 2 O or Li 2 O 2 oxides and tris (pentafluorophenyl) borane as boron based anion receptor for lithium batteries[J]. Electrochemistry Communications , 2008,10(8):1195-1197. [77] Linden D. Handbook of Batteries[M]. New York:Mcgraw-Hill Press,1995. [78] Ue M. Mobility and ionic association of lithium and quaternary ammonium-salts in propylene carbonate and gamma-butyrolactone[J]. Journal of the Electrochemical Society ,1994,141(12): 3336-3342. [79] Hayashi K,Nemoto Y,Tobishima S, et al . Mixed solvent electrolyte for high voltage lithium metal secondary cells[J]. Electrochimica Acta ,1999,44(14):2337-2344. [80] Krause L J,Lamanna W,Summerfield J, et al . Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells[J]. Journal of Power Sources ,1997,68(2):320-325. [81] Behl W K,Plichta E J. Stability of aluminum substrates in lithium-ion battery electrolytes[J]. Journal of Power Sources , 1998,72(2):132-135. [82] Plichta e J,Behl W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources ,2000, 88(2):192-196. [83] Aurbach D. Nonaqueous Electrochemistry [M]. New York:Marcel Dekker,1999. [84] Zhang S S,Xu K,Jow T R. Study of LiBF 4 as an electrolyte salt for a Li-ion battery[J]. Journal of the Electrochemical Society , 2002,149(5):A586-A590. [85] Takami N,Ohsaki T,Hasebe H, et al . Laminated thin Li-ion batteries using a liquid electrolyte[J]. Journal of the Electrochemical Society ,2002,149(1):A9-A12. [86] Zhang S S,Xu K,Jow T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications ,2002,4(11):928-932. [87] Ue M,Murakami A,Nakamura S. Anodic stability of several anions examined by abinitio molecular orbital and density functional theories[J]. Journal of the Electrochemical Society ,2002,149(12):A1572-A1577. [88] Ue M,Takeda M,Takehara M, et al . Electrochemical properties of quaternary ammonium salts for electrochemical capacitors[J]. Journal of the Electrochemical Society ,1997,144(8): 2684-2688. [89] Takata K,Morita M,Matsuda Y, et al . Cycling characteristics of secondary Li electrode in LiBF 4 mixed ether electrolytes[J]. Journal of the Electrochemical Society ,1985,132(1):126-128. [90] Aurbach D,Zaban A,Schechter A, et al. the study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes[J]. Journal of the Electrochemical Society ,1995,142(9):2873-2882. [91] Nanjundiah C,Goldman J L,Dominey L A, et al. Electrochemical stability of LiMF 6 (M=P,As,Sb)in tetrahydrofuran and sulfolane[J]. Journal of the Electrochemical Society ,1988,135(12):2914-2917. [92] Plichta E,Slane S,Uchiyama M, et al . An improved Li/Li x CoO 2 rechargeable cell[J]. Journal of the Electrochemical Society , 1989,136(7):1865-1869. [93] Naoi K,Mori M,Naruoka Y, et al . The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis (perfluoroethylsulfonylimide) [LiN(C 2 F 5 SO 2 ) 2 ][J]. Journal of the Electrochemical Society ,1999,146(2):462-469. [94] Foropoulos J,Desmarteau D D. Synthesis, properties, and reactions of bis[(trifluoromethyl) sulfonyl] imide, (CF 3 SO 2 ) 2 NH[J]. Inorganic Chemistry ,1984,23(23):3720-3723. [95] Sylla S,Sanchez J Y,Armand M. Electrochemical study of linear and cross-linked poe-based polymer electrolytes[J]. Electrochimica Acta ,1992,37(9):1699-1701. [96] Yang H,Kwon K,Devine T M, et al . Aluminum corrosion in lithium batteries:An investigation using the electrochemical quartz crystal microbalance[J]. Journal of the Electrochemical Society ,2000,147(12):4399-4407. [97] Nakajima T,Mori M,Gupta V, et al . Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries[J]. Solid State Sciences ,2002,4(11-12):1385-1394. [98] Dicenso D,Exnar I,Graetzel M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries[J]. Electrochemistry Communications , 2005,7(10):1000-1006. [99] Michot C,Armand M,Sanchez J, et al . New ionically conductive material-contains ionic cpd. with fluoro:Sulphonyl substituent,useful as electrolyte for lithium battery,etc:WO,9526056-A; EP,699349-A; FR,2717612-A; FR,2717612-A1; WO,9526056-A1; EP,699349-A1; JP,8511274-W; US,5916475-A; US,6254797-B1; US,2001025943-A1; US,6682855-B2; CA,216336-C; JP,2006210331-A; JP,3878206-B2; EP,699349-B1; DE,69535612-E; DE,69535612-T2[P/OL]. 1995-09-22. http://www.thomsonpatentstore.net/ portal/servlet/DIIDirect?CC=WO&PN=9526056&DT=A&SrcAuth=Wila&Token=Io6_blYNv8J9zDfT62whrf3t8N3eZb3waLjBKuZlK3b03XxIu3Iwd1_aZcLct9dvPJxc6K8fkTiGlt41Jqt2k3B_MbkAyWE_w1nDpCw9LO1. [100] Zaghib K,Charest P,Guerfi A, et al . Safe Li-ion polymer batteries for HEV applications[J]. Journal of Power Sources , 2004,134(1):124-129. [101] Zaghib K,Charest P,Guerfi A, et al . LiFePO 4 safe Li-ion polymer batteries for clean environment[J]. Journal of Power Sources ,2005,146(1-2):380-385. [102] Li L,Zhou S,Han H, et al . Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J]. Journal of the Electrochemical Society ,2011,158(2):A74-A82. [103] Zhou S,Han H,Nie J, et al . Improving the high-temperature resilience of LiMn 2 O 4 based batteries:LiFNFSI an effective salt[J]. Journal of the Electrochemical Society ,2012,159(8): A1158-A1164. [104] Lischka U,Wietelmann U,Wegner M. Easily prepared,environmentally compatible,stable lithium borate complex salts:WO,200000495-A; DE,19829030-C; EP,1091963-A; DE,19829030-C1; WO,200000495-A1; EP,1091963-A1; KR,2001072657-A; JP,2002519352-W; EP,1091963-B1; DE,59902958-G; US,6506516-B1; ES,2185354-T3; CA,2336323-C; JP,3913474-B2; KR,716373-B1[P/OL]. http://www.thomsonpatentstore.net/portal/ servlet/DIIDirect?CC=WO&PN=9807729&DT=A&SrcAuth=Wila&Token=xqe_w0UirTZEPeDTdK9CexJ7MaNr3lTbxB3FfyrnG2XFY1eMRGFaJNN_TTO8lQY5_1_0etmwZiy_GokZWUmD2VX.rNh8BURFkScvjBpk4JE. [105] Zavalij P Y,Yang S,Whittingham M S. Structural chemistry of new lithium bis (oxalato) borate solvates[J]. Acta Crystallographica Section B : Structural Science ,2004,60:716-724. [106] Xu K,Lee U,Zhang S S, et al . Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes[J]. Electrochemical and Solid State Letters ,2003,6(7): A144-A148. [107] Xu K,Zhang S S,Jow T R. Formation of the graphite electrolyte interface by lithium bis (oxalato) borate[J]. Electrochemical and Solid State Letters ,2003,6(6):A117-A120. [108] Xu K,Zhang S S,Poese B A, et al . Lithium bis (oxalato) borate stabilizes graphite anode in propylene carbonate[J]. Electrochemical and Solid State Letters ,2002,5(11):A259-A262. [109] Eineli Y,Thomas S R,Koch V R. The role of SO 2 as an additive to organic Li-ion battery electrolytes[J]. Journal of the Electrochemical Society ,1997,144(4):1159-1165. [110] Aurbach D,Gamolsky K,Markovsky B, et al . On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries[J]. Electrochimica Acta ,2002,47(9): 1423-1439. [111] Wrodnigg G H,Wrodnigg T M,Besenhard J O, et al . Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochemistry Communications ,1999,1(3-4):148-150. [112] Wrodnigg G H,Besenhard J O,Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J]. Journal of the Electrochemical Society ,1999,146(2): 470-472. [113] Girard H,Simon N,Ballutaud D, et al . Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes[J]. Diamond and Related Materials ,2007,16(2): 316-325. [114] Herlem G,Fahys B,Szekely M, et al . n-Butylamine as solvent for lithium salt electrolytes, structure and properties of concentrated solutions[J]. Electrochimica Acta ,1996,41(17):2753-2760. [115] Aurbach D,Eineli Y,Chusid O, et al . The correlation between the surface-chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries[J]. Journal of the Electrochemical Society ,1994,141(3): 603-611. [116] Shu Z X,mcmillan R S,Murray J J. Effect of 12 crown-4 on the electrochemical intercalation of lithium into graphite[J]. Journal of the Electrochemical Society ,1993,140(6):L101-L103. [117] Lee H S,Sun X,Yang X Q, et al . Synthesis of cyclic aza-ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution[J]. Journal of the Electrochemical Society ,2000,147(1):9-14. [118] Lee H S,Yang X Q,Mcbreen J, et al . The synthesis of a new family of anion receptors and the studies of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions[J]. Journal of the Electrochemical Society ,1996, 143(12):3825-3829. [119] Richard M N,Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Experimental[J]. Journal of the Electrochemical Society ,1999, 146(6):2068-2077. [120] Richard M N,Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte II. Modeling the results and predicting differential scanning calorimeter curves[J]. Journal of the Electrochemical Society , 1999,146(6):2078-2084. [121] Richard M N,Dahn J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources ,1999,79(2):135-142. [122] Richard M N,Dahn J R. Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte[J]. Journal of Power Sources ,1999,83(1-2):71-74. [123] Xianming W,Yasukawa E,Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:I. Fundamental properties[J]. Journal of the Electrochemical Society ,2001,148(10):A1058-A1065. [124] Xianming W,Yasukawa E,Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:II. The use of an amorphous carbon anode[J]. Journal of the Electrochemical Society ,2001,148(10):A1066-A1071. [125] Yamaki J,Tanaka T,Ihara M, et al . Thermal stability of methyl difluoroacetate as a novel electrolyte solvent for lithium batteries electrolytes[J]. Electrochemistry ,2003,71(12):1154-1156. [126] Yamaki J I,Yamazaki I,Egashira M, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells[J]. Journal of Power Sources ,2001,102(1-2):288-293. [127] Buhrmester C,Chen J,Moshurchak L, et al . Studies of aromatic redox shuttle additives for LiFePO 4 -based Li-ion cells[J]. Journal of the Electrochemical Society ,2005,152(12):A2390-A2399. [128] Chen J,Buhrmester C,Dahn J R. Chemical overcharge and overdischarge protection for lithium-ion batteries[J]. Electrochemical and Solid State Letters ,2005,8(1):A59-A62. [129] Shima K,Ue M,Yamaki J. Redox mediator as an overcharge protection agent for 4 V class lithium-ion rechargeable cells[J]. Electrochemistry ,2003,71(12):1231-1235. [130] Tobishima S,Ogino Y,Watanabe Y. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells[J]. Journal of Applied Electrochemistry ,2003,33(2):143-150. [131] Guoying C,Richardson T J. Overcharge protection for rechargeable lithium batteries using electroactive polymers[J]. Electrochemical and Solid-State Letters ,2004,7(2): A23-A26. [132] Adachi M,Tanaka K,Sekai K. Aromatic compounds as redox shuttle additives for 4 V class secondary lithium batteries[J]. Journal of the Electrochemical Society ,1999,146(4): 1256-1261. [133] Abraham K M,Pasquariello D M,Willstaedt E B. Normal-butylferrocene for overcharge protection of secondary lithium batteries[J]. Journal of the Electrochemical Society , 1990,137(6):1856-1857. [134] Xiao L F,Ai X P,Cao Y L, et al . Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochimica Acta ,2004,49(24): 4189-4196. [135] Barker J,Stux A M. Electrolytic cells containing additives for inhibiting the decomposition of lithium salts:Comprising anode,cathode and electrolyte containing a lithium salt,a solvent and a carbonate additive,and useful for non-aqueous batteries:US,5707760-A[P/OL]. 1998-01-13. http://www.thomsonpatentstore.net/ portal/servlet/DIIDirect?CC=US&PN=5707760&DT=A&SrcAuth=Wila&Token=toT09zn_.SGVVvH8NEzjcm9b.HOX24bOxhaZbBuQhcmzf9SDtCiZv4wSJuf12naVPpV9BN1vmaxSQ1GyP3hs199AM K0vc.Gjt739pVLa38A. [136] Inventor U. Electrolyte used for lithium ion battery, comprises specified amount of lithium salt, organic solvent and additive:CN,102324563-A[P/OL]. 2012-01-18. http://www.google.com/patents/ CN102324563A?cl=zh. [137] Shang Z,Yang H,Hou H, et al . Electrolyte comprises lithium hexafluorophosphate, mixed solvent comprising diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, ethylene carbonate and propylene carbonate, and additive:CN,103107358-A[P/OL]. 2013-05-15. http://www.google.com/patents/CN103107358A?cl=zh. [138] Chalasani D,Li J,Jackson N M, et al . Methylene ethylene carbonate:Novel additive to improve the high temperature performance of lithium ion batteries[J]. Journal of Power Sources , 2012,208:67-73. [139] Liu B X,Li B,Guan S Y. Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters ,2012,15(6): A77-A79. [140] Liao L,Zuo P,Ma Y, et al . Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode[J]. Electrochimica Acta ,2012,74:260-266. [141] Bian F,Zhang Z,Yang Y. Effects of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Journal of Electrochemistry ,2013,19(4):355-360. [142] Liao L,Cheng X,Ma Y, et al . Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO 4 electrode[J]. Electrochimica Acta ,2013,87:466-472. [143] Xiang R,Li F,Jia G, et al . Effects of FEC additive on the low temperature performance of LiODFB-based lithium-ion batteries[J]. Applied Energy Technology ,2013,724:1025-1028. [144] Tsujioka S,Takase H,Takahashi M, et al . Electrolyte for electrochemical device such as lithium cell and electrical double-layer capacitor,comprises ionic metal complex:EP,1195834-A2; US,2002081496-A1; JP,2002184460-A; JP,2002184465-A; JP,2002110235-A; JP,2002373703-A; US,6783896-B2; JP,3722685-B2; JP,3730860-B2; JP,3730861-B2; JP,4076738-B2; EP,1195834-B1; DE,60143070-E [P/OL]. 2002-04-10. http://www.google.com/patents/EP1195834A2?cl=en. [145] Tsujioka S,Takase H,Takahashi M, et al . Electrolyte for electrochemical devices,comprises ionic metal complex,and specific ionic compound(s):US,2002061450-A1; JP,2002164082-A; JP,2002164083-A; JP,2003068359-A; US,6787267-B2; JP,3730855-B2; JP,3730856-B2; JP,4076748-B2 [P/OL]. 2002-05-23. http://www.thomsonpatentstore.net/portal/servlet/DIIDirect?CC=US&PN=2002061450&DT=A1&SrcAuth=Wila&Token=toT09zn_.SGtruRdL2_HB1ySfIKpulpMOuDg_fQd..8DT_V8owJlKu3_Ruvqdqda2lLM2THVjbrCTxrFhSyhKUPP_jSq2gZv3EFfL2jT4f0. [146] Chen X,Wang N,Xia H, et al . Non-aqueous electrolyte battery, has non-aqueous electrolyte provided with solvent, additive and electrolyte that is made of lithium hexafluorophosphate, where additive is biphenyl, vinyl acetate, divinyl adipate or vinylene carbonate:CN,102280662-A [P/OL]. 2011-12-14. http://www.google.com/patents/ CN102280662A?cl=zh. [147] Choi S J,Lee M S,Jeong C S, et al . Additive, useful in non-aqueous electrolyte for overcharge prevention of secondary battery, comprises terphenyl derivative e.g. o-terphenyl, and xylene derivative e.g. bromoxylene:EP,2523247-A1; US,2012288752-A1; KR,2012126305-A; JP,2012238595-A; CN,102780036-A[P/OL]. 2012-11-14. http://www.google.com/patents/CN102780036A?cl=en. [148] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources ,2006,162(2): 1379-1394. [149] Blanchard L A,Hancu D,Beckman E J, et al . Green processing using ionic liquids and CO 2 [J]. Nature ,1999,399(6731): 28-29. [150] Huddleston J G,Willauer H D,Swatloski R P, et al . Room temperature ionic liquids as novel media for "clean" liquid-liquid extraction[J]. Chemical Communications ,1998,16:1765-1766. [151] Welton T. Room-temperature ionic liquids, solvents for synthesis and catalysis[J]. Chem. Rev. ,1999,99(8):2071-2083. [152] Tait S,Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity[J]. Inorganic Chemistry ,1984,23(25):4352-4360. [153] Liu Jianlian(刘建连). Study on synthesis and characterization of typical N,N ' -dialkylimidazolium-based ionic liquids[D]. Xi , an:Northwest University,2006. [154] Galinski M,Lewandowski A,Stepniak I. Ionic liquids as electrolytes[J]. Electrochimica Acta ,2006,51(26):5567-5580. [155] Garcia B,Lavallee S,Perron G, et al . Room temperature molten salts as lithium battery electrolyte[J]. Electrochimica Acta ,2004, 49(26):4583-4588. [156] Matsumoto H,Sakaebe H,Tatsumi K, et al . Fast cycling of Li/LiCoO 2 cell with low-viscosity ionic liquids based on bis (fluorosulfonyl) imide FSI[J]. Journal of Power Sources ,2006, 160(2):1308-1313. [157] Sakaebe H,Matsumoto H. N -Methyl- N -propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP 13-TFSI)-novel electrolyte base for Li battery[J]. Electrochemistry Communications ,2003, 5(7):594-598. [158] Armand M,Endres F,Macfarlane D R, et al . Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials ,2009,8(8):621-629. [159] Lewandowski A,Swiderska M A. Ionic liquids as electrolytes for Li-ion batteries:An overview of electrochemical studies[J]. Journal of Power Sources ,2009,194(2):601-609. [160] Nakagawa H,Izuchi S,Kuwana K, et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt[J]. Journal of the Electrochemical Society |
[1] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[2] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[3] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[4] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. |
[5] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[6] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[7] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[8] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[9] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[10] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[11] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[12] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[13] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[14] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
[15] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||