Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (2): 109-119.doi: 10.3969/j.issn.2095-4239.2016.02.001
• Key technology of lithium battery • Next Articles
LU Hao1, LIU Bonan1, CHU Geng1, ZHENG Jieyun1, LUO Fei2, 3, QIU Xinping2, LI Hui3, LIU Fang3, FENG Suning3, CHEN Wei3, LI Hong1, CHEN Liquan1
Received:
2016-01-19
Revised:
2016-01-22
Online:
2016-03-01
Published:
2016-03-01
CLC Number:
LU Hao, LIU Bonan, CHU Geng, ZHENG Jieyun, LUO Fei, QIU Xinping, LI Hui, LIU Fang, FENG Suning, CHEN Wei, LI Hong, CHEN Liquan. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 109-119.
[1] 吕迎春,李泓. 电化学储能基本问题综述[J]. 电化学,2015,21(5):412-424. LV Y C,LI H. Review of basic problems about electrochemical energy storage[J]. Electrochemistry,2015,21(5):412-424. [2] 郝润蓉,方锡义,钮少冲. 无机化学丛书 (第三卷) [M]. 北京:科学出版社,1998:404-425. HAO R R,FANG X Y,NIU S C. Inorganic chemistry books(Ⅲ)[M]. Beijing:Science Press,1998:404-425. [3] CHOI W C,BYUN D,LEE J K. Electrochemical characteristics of silver-and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries[J]. Electrochimica Acta,2004,50(2):523-529. [4] LEE H Y,BAEK J K,LEE S M,et al. Effect of carbon coating on elevated temperature performance of graphite as lithium-ion battery anode material[J]. J. Power Sources,2004,128(1):61-66. [5] TANAKA H,OSAWA T,MORIYOSHI Y,et al. Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma[J]. Thin Solid Films,2004,457(1):209-216. [6] YAMAUCHI Y,HINO T,OHZEKI K,et al. Gas desorption behavior of graphite anodes used for lithium ion secondary batteries[J]. Carbon,2005,43(6):1334-1336. [7] LEE J H,LEE S,PAIK U,et al. Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance[J]. J. Power Sources,2005,147(1):249-255. [8] WANG G P,ZHANG B N,YUE M,et al. A modified graphite anode with high initial efficiency and excellent cycle life expectation[J]. Solid State Ionics,2005,176(9):905-909. [9] FENG Z Z,SONG S Q. Mesophase pitch preparation methods and applications[J]. Carbon,2013(2):42-45. [10] HONDA H,YAMADA Y. Meso-carbon microbeads[J]. J. Japan Petrol Inst.,1973,16:392-397. [11] WANG Q,LI H,CHEN L Q,HUANG X J. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39:2211-2214. [12] HU J,LI H,HUANG X J. Influence of micropore structure on Li-storage capacity in hard carbon spherules[J]. Solid State Ionics,2005,176:1151-1159. [13] HUANG K L,WANG Z X,LIU S Q. The theory and key technonlogy of lithum ion batteries[M]. Beijing:Chemical Industry Press,2008. [14] ONKERG H J. Proceedings 3rd Symp. On Reactivity of Solid[C]. Madrid,Span,1956. [15] OHZUKU T,UEDA A,YAMAMOTO N. Zero-strain insertion material of Li4Ti5O12 for rechargeable lithium cells[J]. J. Electrochem. Soc.,1995,142(5):1431-1435. [16] MARTHA S K,HAIK O,BORGEL V,et al. Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application[J]. J. Electrochem. Soc.,2011,158(7):A790-A797. [17] BEAULIEU L Y,HATCHARD T D,BONAKDARPOUR A,et al. Reaction of Li with alloy thin films studied by in situ AFM[J]. J. Electrochem. Soc.,2003,150(11):A1457. [18] HE Y,YU X Q, LI G,WANG R,LI H,WANG Y L,GAO H J,HUANG X J. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. J. Power Sources,2012,216:131-138. [19] LUO F,LIU B,ZHENG J Y,et al. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. J. Electrochem. Soc.,2015,162(14):A2509-A2528. [20] ZHENG J,ZHENG H,WANG R,et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys.,2014,16(26):13229-13238. [21] LUO F,CHU G,XIA X,et al. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J]. Nanoscale,2015,7(17):7651-7658. [22] LIU X H,ZHENG H,ZHONG L,et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Lett.,2011,11:3312-3318. [23] 李泓,陈立泉,黄学杰. 一种以纳米相金属材料为阳极活性材料的二次锂电池:1202018A[P].1997-06-10. LI H,CHEN L Q,HUANG X J. A metal nano phase as the anode active material of lithium secondary battery:1202018A[P]. 1997-06-10. [24] 李泓,黄学杰,陈立泉. 一种二次锂电池:1247388A[P]. 1998-09-10. LI H,HUANG X J,CHEN L Q. A kind of lithium secondery battery:1247388A[P]. 1998-09-10. [25] 王广驹. 世界石墨生产,消费及国际贸易[J]. 中国非金属矿工业导刊,2006,27(1):61-65. WANG G J. Global graphite production, consumption and global trade[J]. China Non-Metallic Mining Industry Herald,2006,27(1):61-65. [26] 罗飞,褚庚,黄杰,等. 锂离子电池基础科学问题(Ⅷ)——负极材料[J]. 储能科学与技术,2014,3(2):146-163. LUO F,CHU G,HUANG J,et al. Foundamental scientific aspects of lithium batteries (Ⅷ)-Anode eletrode materials[J]. Energy Storage Science and Technology,2014,3(2):146-163. [27] SATO Y,KIKUCHI Y,NAKANO T,et al. Characteristics of coke carbon modified with mesophase-pitch as a negative electrode for lithium ion batteries[J]. J. Power Sources,1999,81:182-186. [28] 高玲,仇卫华,赵海雷. Li4Ti5O12作为锂离子电池负极材料电化学性能[J]. 北京科技大学学报,2005,27(1):82-85. GAO L,QIU W H,ZHAO H L. Lithiated titanium complex oxide as negative electrode[J]. Journal of University of Science and Technology Beijing,2005,27(1):82-85. [29] GUERFI A,CHAREST P,KINOSHITA K,et al. Nano electronically conductive titanium-spinel as lithium ion storage negative electrode[J]. J. Power Sources,2004,126(1):163-168. [30] PECHARROMAN C,AMARILLA J. Thermal evolution of infrared vibrational properties of Li4Ti5O12 measured by specular reflectance[J]. Physical Review B,2000,62(18):12062. [31] SCHARNER S,WEPPNER W,SCHMID-BEURMANN P. Evidence of two-phase formation upon lithium insertion into the Li4Ti5O12 spinel[J]. J. Electrochem. Soc.,1999,146(3):857-861. [32] ZAGHIB K,SIMONEAU M,ARMAND M,et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J. Power Sources,1999,81:300-305. [33] HAO Y,LAI Q Y,LIU D,et al. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Materials Chemistry and Physics,2005,94(2/3):382-387. [34] KAVAN L,GRTZEL M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion[J]. Electrochem. Solid-State Lett.,2002,5(2):A39-A42. [35] BACH S,PEREIRA-RAMOS J,Baffier N. Electrochemical properties of sol-gel Li4Ti5O12[J]. J. Power Sources,1999,81:273-276. [36] 王虹. 微波法制备钛酸锂的方法:101333001A[P]. 2008-07-18. WANG H. Microwave method to prepare lithium titanate:101333001A[P]. 2008-07-18. [37] 杨立. 一种应用于锂离子电池的钛酸锂负极材料的制备方法:101409341A[P]. 2008-11-20. YANG L. A preparation method of lithium ion battery anode materials of lithium titanate:101409341A[P]. 2008-11-20. [38] LI J,TANG Z,ZHANG Z. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochemistry Communications,2005,7(9):894-899. [39] 白莹. 一种用于锂二次电池负极材料尖晶石钛酸锂的制备方法:1919736A[P]. 2006-08-17. BAI Y. A preparation method of lithium ion battery anode materials of spinel lithium titanate:1919736A[P]. 2006-08-17. [40] HUANG Y,QI Y,JIA D,et al. Synthesis and electrochemical properties of spinel Li4Ti5O12?xClx anode materials for lithium-ion batteries[J]. J. Solid State Electrochem.,2012,16(5):2011-2016. [41] TIAN B,XIANG H,ZHANG L,et al. Niobium doped lithium titanate as a high rate anode material for Li-ion batteries[J]. Electrochimica Acta,2010,55(19):5453-5458. [42] HUANG S,WEN Z,ZHU X,et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries[J]. J. Power Sources,2007,165(1):408-412. [43] CAI R,YU X,LIU X,et al. Li4Ti5O12/Sn composite anodes for lithium-ion batteries:Synthesis and electrochemical performance[J]. J. Power Sources,2010,195(24):8244-8250. [44] HU X,LIN Z,YANG K,et al. Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction[J]. Electrochimica Acta,2011,56(14):5046-5053. [45] YUAN T,YU X,CAI R,et al. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance[J]. J. Power Sources,2010,195(15):4997-5004. [46] VENKATESWARLU M,CHEN C,DO J,et al. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy[J]. J. Power Sources,2005,146(1):204-208. [47] 吴晓东,胡进,黄学杰,等. 用于二次锂电池的含氧复合碳材料及其制备方法和用途:1601786A[P]. 2003-09-26. WU X D,HU J,HUANG X J,et al. Used for lithium secondary battery oxygen carbon composite material and its preparation method and uses:1601786A[P]. 2003-09-26. [48] 李泓,师丽红,黄学杰,陈立泉. 一种以表面沉积纳米合金的碳材料为负极的二次锂电池:1327275A[P]. 2000-06-06. LI H,SHI L H,HUANG X J,CHEN L Q. A kind of lithium secondary battery using the deposition of a nanometer alloy on the surface of carbon as the anode material:1327275A[P]. 2000-06-06. [49] 吴晓东,黄学杰,陈立泉. 纳米金属或合金复合材料及其制备和用途:1595683A[P]. 2003-09-10. WU X D,HUANG X J,CHEN L Q. Nano metal or alloy materials and their preparation method and uses:1595683A[P]. 2003-09-10. [50] 李泓,胡进,黄学杰,陈立泉. 用于二次锂电池的负极活性材料和用途:1681145A[P]. 2004-04-05. LI H,HU J,HUANG X J,CHEN L Q. Used as the anode active material of lithium ion secondary battery and its uses:1681145A[P]. 2004-04-05. [51] 李泓,黄学杰. 一种具有球形核壳结构的硅碳复合材料及其制法和用途:1891668A[P]. 2005-07-08. LI H,HUANG X J. A silicon carbon composite material with spherical core-shell structure and its preparation method and uses:1891668A[P]. 2005-07-08. [52] 舒杰,李泓,黄学杰. 一种纳米硅线/碳复合材料及其制备方法和用途:1895993A[P]. 2005-07-12. SHU J,LI H,HUANG X J. A nano silicon wire/carbon composite material and its preparation method and uses:1895993A[P]. 2005-07-12. [53] S C I C L(SHIE-C). Highly active silicon oxide powder useful as raw material in the production of ceramics and organosilicic compounds and as active material for negative electrodes of lithium ion secondary batteries:JP2001226112-A[P]. 2000-02-15. [54] KIM J Y,NGUYEN D T,KANG J S,et al. Facile synthesis and stable cycling ability of hollow submicron silicon oxide-carbon composite anode material for Li-ion battery[J]. J. Alloys Compounds,2015,633:92-96. [55] JIA H,GAO P,YANG J,et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Adv. Energy Mater.,2011,1(6):1036-1039. [56] 钟开富,李泓,黄学杰,陈立泉. 用于锂离子二次电池的负极材料、含该负极材料的负极及其制备方法以及含该负极的电池:102122708A[P]. 2010-01-08. ZHONG K F,LI H,HUANG X J,CHEN L Q. A kind of anode material for lithium ion secondary battery,anodes including this material and their preparation methods,and batteries including this material:102122708A[P]. 2010-01-08. [57] 王艳红,李泓,刘尧平,梅增霞,王燕,杜小龙. 一种用于锂电池的负极材料及其制备方法和应用:103474632A[P]. 2012-06-07. WANG Y H,LI H,LIU X P,MEI Z X,WANG Y,DU X L. A kind of anode material for lithium batteries and its preparation method and uses:103474632A[P]. 2012-06-07. [58] 罗飞,褚赓,李泓,刘柏男,黄学杰,陈立泉. 一种预先碱金属化的方法及其在电池材料中的应用:104766947A[P]. 2014-01-03. LUO F,CHU G,LI H,LIU B N,HUANG X J,CHEN L Q. A method of alkali metal mineralization in advance and its uses in battery materials:104766947A[P]. 2014-01-03. [59] 罗飞,刘柏男,李泓,褚赓,黄学杰,陈立泉. 纳米级锂硅合金材料及其制备方法和用途:104766965A[P] . 2014-01-03. LUO F,LIU B N,LI H,CHU G,HUANG X J,CHEN L Q. Lithium nanoscale silicon alloy material and its preparation method and uses:104766965A[P]. 2014-01-03. [60] WINTER M,BESENHARD J O,SPAHR M E,NOVAK P. Insertion electrode materials for rechargeable lithium batteries[J]. Adv. Mater,1998,10(10):725-763. [61] YOSHIO N. The development of lithium ion secondary batteries[J]. The Chemical Record,2001,1:406-413. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[5] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[6] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[9] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[10] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[11] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[12] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[13] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
[14] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[15] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||