Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (4): 376-394.doi: 10.3969/j.issn.2095-4239.2014.04.012
• Expert lectures • Previous Articles Next Articles
ZHANG Shu, WANG Shaofei, LING Shigang, GAO Jian, WU Jiaoyang, XIAO Ruijuan, LI Hong, CHEN Liquan
Received:
2014-06-01
Online:
2014-07-01
Published:
2014-07-01
CLC Number:
ZHANG Shu, WANG Shaofei, LING Shigang, GAO Jian, WU Jiaoyang, XIAO Ruijuan, LI Hong, CHEN Liquan. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394.
[1] Fenton D E,Parker J M,Wright P V. Complexes of alkali metal ions with poly (ethylene oxide)[J]. Polymer ,1973,14(11):589. [2] Wright P V. Electrical conductivity in ionic complexes of poly(ethylene oxide)[J]. British Polymer Journal ,1975,7(5):319-327. [3] Armnd M B,Chabagno J M,Duclot M J.Poly-ethers as solid electrolyter[C]//Lake Geneva:Fast Ion Transport in Solids Electrodes and Electrolytes,1979:131-136. [4] Kamaya N,Homma K,Yamakawa Y, et al . A lithium superionic conductor[J]. Nature Materials ,2011,10(9):682-689. [5] Brous J,Fankuchen I,Banks E. Rare earth titanates with a perovskite structure[J]. Acta Cryst. ,1953,6(1):67-70. [6] Inaguma Yoshiyuki,Chen Liquan,Mitsuru Itoh. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications ,1993,86(10):689-693. [7] Fourquet J L,Duroy H,Crosnier-Lopez M P. Structural and microstructural studies of the series La 2/3- x Li 3 x □ 1/3-2 x TiO 3 [J]. Journal of Solid State Chemistry ,1996,127(2):283-294. [8] Emery J,Buzare J Y,Bohnke O, et al . Lithium-7NMR and ionic conductivity studies of lanthanum[J]. Solid State Ionics ,1997,99(1-2):41-51. [9] Bohnke O. The fast lithium-ion conducting oxides Li 3 x La 2/3- x TiO 3 from fundamentals to application[J]. Solid State Ionics ,2008,179(1-6):9-15. [10] Shan YueJin,Chen Liquan,Inaguma Yoshiyuki, et al . Oxide cathode with perovskite structure for rechargeable lithium[J]. Journal of Power Sources ,1995,54(2):397-402. [11] Zhao Y S,Daemen L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J. Am. Chem. Soc .,2012,134(36):15042-15048. [12] Reckeweg O,Blaschkowski B,Schleid T. Li 5 OCl 3 and Li 3 OCl:Two remarkably different lithium oxide chlorides[J]. Z. Anorg. Allg. Chem. ,2012,638(12-13):2081-2086. [13] Emly A,Kioupakis E,Ven Van der A. Phase stability and transport mechanisms in antiperovskite Li 3 OCl and Li 3 OBr superionic conductors[J]. Chem. Mater. ,2013,25(23):4663-4670. [14] Mouta R,Silva R X,Paschoal C W A. Tolerance factor for pyrochlores and related structures[J]. Acta Crystallogr B ,2013,69:439-445. [15] Zhang Y,Zhao Y S,Chen C F. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites[J]. Phys. Rev. B ,2013,87(13):134303 . [16] Schroeder D J,Hubaud A A,Vaughey J T. Stability of the solid electrolyte Li 3 OBr to common battery solvents[J]. Mater. Res. Bull. ,2014,49:614-617. [17] Weiss E,Hensel H,Kuhr H. Radiological and nuclear magnetic broad line resonance of lithium halide monohydrate[J]. Chem. Ber.-Recl. ,1969,102(2):632. [18] Rudo K,Hartwig P,Weppner W. Ionic conductivities and phase-equilibria of the lithium iodide hydrates[J]. Rev. Chim. Miner. ,1980,17(4):420-429. [19] Hartwig P,Rabenau A,Weppner W. Lithium hydroxide halides-phase-equilibria and ionic conductivities[J]. J. Less.-Common. Met. ,1981,78(2):227-233. [20] Andersen N H,Kjems J K,Poulsen F W. Neutron-scattering studies of the ionic conductor LiI·D 2 O[J]. Phys. Scripta. ,1982,25(6):780-784. [21] Nakamura O,Goodenough J B. Conductivity enhancement of lithium bromide monohydrate by Al 2 O 3 particles[J]. Solid State Ionics ,1982,7(2):119-123. [22] Nakamura O,Goodenough J B. Fast lithium-ion transport in composites containing lithium bromide dihydrate[J]. Solid State Ionics ,1982,7(2):125-128. [23] Barlage H,Jacobs H. Li 2 I(OH):A compound with one-dimensional infinite edge-sharing [Li 4/2 (OH) + ] pyramids[J]. Z. Anorg. Allg. Chem. ,1994,620(3):475-478. [24] Barlage H,Jacobs H. Unusual coordination polyhedra around oxygen in Li 4 Cl(OH) 3 [J]. Z. Anorg. Allg. Chem. ,1994,620(3):471-474. [25] Barlage H,Jacobs H. Li 2 Br(NH 2 ) - the 1st ternary alkali-metal amide halide[J]. Z. Anorg. Allg. Chem. ,1994,620(3):479-482. [26] Eilbracht C,Kockelmann W,Hohlwein D, et al. Orientational disorder in perovskite like structures of Li 2 X(OD) (X=Cl, Br) and LiBr·D 2 O[J]. Physica B ,1997,234:48-50. [27] Schwering G,Honnerscheid A,Wullen L V, et al . High lithium ionic conductivity in the lithium halide hydrates Li 3- n (OH n )Cl (0.83≤ n ≤2) and Li 3- n (OH n )Br (1≤ n ≤2) at ambient temperatures[J]. Chem. Phys. Chem. ,2003,4(4):343-348. [28] Lars-Oven Hagman,Peder Kierkegaard. The crystal structure of NaMe 2 IV (PO 4 ) 3 ; Me IV =Ge, Ti, Zr[J]. Acta Chemica Scandinavica ,1968,22(6):1822-1832. [29] Goodenough J B,Hong H Y P,Kafalas J A. Fast Na + -ion transport in skeleton structures[J]. Mater. Res. Bull. ,1976,11(2):203-220. [30] Anantharamulu N,Koteswara R K,Rambabu G, et al . A wide-ranging review on nasicon type materials[J]. Journal of Materials Science ,2011,46(9):2821-2837. [31] Subramanian M A,Subramanian R,Clearfield A. Lithium ion conductors in the system AB(IV)2(PO4)3(B = Ti, Zr and Hf)[J]. Solid State Ionics,1986,18-19(1):562-569.[32] Aono H,Sugimoto E. Ionic conductivity of the lithium titanium phosphate [Li l+ x M x Ti 2- x (PO 4 ) 3 , M=Al, Sc, Y and La] systems[J]. Journal of Electrochemical Society ,1989,136(2):590-591. [33] Aono H,Sugimoto E. Ionic conductivity and sinter ability of lithium titanium phosphate system[J]. Solid State Ionics ,1990,40-41(1):38-42. [34] Aono H,Sugimoto E. Electrical property and sinterability of LiTi 2 (PO 4 ) 3 mixed with lithium salt (Li 3 PO 4 or Li 3 BO 3 )[J]. Solid State Ionics ,1991,47(3-4):257-264. [35] Fu Jie. Fast Li + ion conduction in Li 2 O-A1 2 O 3 -TiO 2 -SiO 2 -P 2 O 5 glass-ceramics[J]. Journal of the American Ceramic Society ,1997,80(7):1901-1903. [36] Birke P,Salam F,Doring S, et al . A first approach to a monolithic all solid state inorganic lithium[J]. Solid State Ionics ,1999,118(1-2):149-157. [37] Kitaura Hirokazu,Zhou Haoshen. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Advanced Energy Materials ,2012,2(7):889-894. [38] Ferg E,Gummow R J,Kock A D. Spinel anodes for lithium-ion batteries[J]. Journal of Electrochemical Society ,1994,141(11):147-150. [39] Hong H Y P. Crystal structure and ionic conductivity of Li 14 Zn(GeO 4 ) 4 and other new Li + superionic conductors[J]. Mater. Res. Bull. ,1978,13(8):117-124. [40] Bruce P G,West A R. The AC conductivity of polycrystalline LISICON, Li 2+ x ZnGeO 4 , and a model for intergranular constriction resistances[J]. Journal of Electrochemical Society ,1983,130(3): 662-669. [41] Robertson A D,West A R,Ritchie A G. Solid state ionics-review of crystalline lithium-ion conductors suitable for high temperature battery applications[J]. Solid State Ionics ,1997,104(1-2):1-11. [42] Bruce P G,West A R. Phase diagram of the LISICON, solid electrolyte system, Li 4 GeO 4 -Zn 2 GeO 4 [J]. Mater. Res. Bull. ,1980,3:379-385. [43] Bruce P G,West A R,David W I F. Structure determination of LISICON solid solutions by powder neutron diffraction[J]. J. Solid State Chem .,1988,75:390-396. [44] Koji Fujimura,Atsuto Seko,Yukinori Koyama, et al . Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms[J]. Advanced Energy Materials ,2013,3(8):980-985. [45] Sumathipala H H,Dissanayake M A K L,West A R. Novel Li-ion conductors and mixed conductors, Li 3+ x Si x Cr 1- x O 4 and a simple method for estimating Li + /e - transport numbers[J]. Journal of Electrochemical Society ,1995,142(7):2138-2143. [46] Kanno R,Hata T,Kawamoto Y, et al . Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics ,2000,130(1-2):97-104. [47] Murayama M,Kanno R,Irie M. Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system[J]. J. Solid State Chem .,2002,168(1):140-148. [48] Kanno Ryoji,Murayama Masahiro. Lithium ionic conductor thio-LISICON:The Li 2 S-GeS 2 -P 2 S 5 system[J]. J. Electrochem. Soc. ,2001,148(7):A742. [49] Mo Yifei,Shyue Ping Ong,Gerbrand Ceder. First principles study of the Li 10 GeP 2 S 12 lithium super ionic conductor material[J]. Chem. Mater. ,2012,24(1):15-17. [50] Thangadurai V,Kaack H,Weppner W J F. Novel fast lithium ion conduction in garnet-type Li 5 La 3 M 2 O 12 (M=Nb, Ta)[J]. Journal of the American Ceramic Society ,2004,86(3):437-440. [51] Cussen Edmund J. The structure of lithium garnets:Cation disorder and clustering in a new family of fast Li + conductors[J]. Chem. Commun. ,2006,37(15):412. [52] Wullen L V,Echelmeyer T,Meyer H W,Wilmer D. The mechanism of Li-ion transport in the garnet Li 5 La 3 Nb 2 O 12 [J]. Physical Chemistry Chemical Physics ,2007,9(25):3298-3303. [53] Thangadurai Venkataraman,Weppner Werner. Li 6 ALa 2 Nb 2 O 12 (A=Ca, Sr, Ba):A new class of fast lithium ion conductors with garnet-like structure[J]. Journal of the American Ceramic Society ,2005,88(2):411-418. [54] Thangadurai V,Weppner W. Li 6 ALa 2 Ta 2 O 12 (A=Sr, Ba):Novel garnet-like oxides for fast lithium ion conduction[J]. Adv. Funct. Mater. ,2005,15(1):107-112. [55] Thangadurai V,Weppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li 5 La 3 Nb 2 O 12 and In-and K-doped Li 5 La 3 Nb 2 O 12 [J]. J. Solid State Chem. ,2006,179(4):974-984. [56] Murugan R,Thangadurai V,Weppner W. Fast lithium ion conduction in garnet-type Li 7 La 3 Zr 2 O 12 [J]. Angewandte Chemie ,2007,46(41):7778-7781. [57] Awaka Junji,Kijima Norihito,Hayakawa Hiroshi, et al . Synthesis and structure analysis of tetragonal Li 7 La 3 Zr 2 O 12 with the garnet-related type structure[J]. J. Solid State Chem. ,2009,182(8):2046-2052. [58] Geiger C A,Alekseev E,Lazic B, et al . Crystal chemistry and stability of "Li 7 La 3 Zr 2 O 12 " garnet:A fast lithium-ion conductor[J]. Inorganic Chemistry ,2011,50(3):1089-1097. [59] Boukamp B A,Huggins R A. Lithium ion conductivity in lithium nitride[J]. Physics Letters A ,1976,58(4):231-233. [60] Hartwing P,Weppner W,Wichelhaus W. Fast ionic lithium conduction in solid lithium nitride chloride[J]. Mater. Res. Bull. ,1979,14(4):49349-49358. [61] Jia Yongzhong,Yang Jinxian. Study of the lithium solid electrolytes based on lithium nitride chloride Li 9 N 2 Cl 3 [J] . Solid State Ionics ,1997,96:113-117. [62] Jing Yan(景燕),Jia Yongzhong(贾永忠),Ma Peihua(马培华). Synthesis and characterization of the solid state electrolyte Li 9- nx M x N 2 Cl 3 (M=Na, Mg, Al)[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),2000,16(6):921-927. [63] Hatake S,Kuwano J,Miyamori M, et al . New lithium-ion conducting compounds 3Li 3 N-MI (M =Li, Na, K, Rb) and their application to solid-state lithium-ion cells[J]. Journal of Power Sources ,1997,68(2):416-420. [64] Kulkarni A R,Maiti H S,Paul A. Fast ion conducting lithium glasses Review[J]. Bulletin of Materials Science ,1984,6(2):201-221. [65] Bates J B,Dudney N J,Gruzalski G R, et al . Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. Journal of Power Sources ,1993,43(1-3):103-110. [66] Dudney N J,Neudecker B J. Solid state thin-film lithium battery systems[J]. Current Opinion in Solid State and Materials Science ,1999,4(5):479-482. [67] Mercier R,Malugani J P,Fahys B. Superionic conduction in Li 2 S- P 2 S 5 -LiI glasses[J]. Solid State Ionics ,1981,5:663-666. [68] Pardel A,Ribes M. Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching[J]. Solid State Ionics ,1986,18-19(1):351-355. [69] Hayashi A. Preparation and characterization of glass materials for all-solid-state lithium secondary batteries[J]. Journal of the Ceramic Society of Japan ,2007,115(2):110-117. [70] Hayashi A,Tatsumisago M,Minami T. Structural investigation of 95(0.6Li 2 S-0.4SiS 2 )5Li 4 SiO 4 oxysulfide glass by using X-ray photoelectron spectroscopy[J]. Journal of American Ceramic Society ,1998,81(5):1305-1309. [71] Minami T,Hayashi A,Tatsumisago M. Preparation and characterization of lithium ion-conducting oxysulfide glasses[J]. Solid State Ionics ,2000,136:1015-1023. [72] Tatsumisago M,Hama S,Hayashi A, et al . New lithium ion conducting glass-ceramics prepared from mechanochemical Li 2 S-P 2 S 5 glasses[J]. Solid State Ionics ,2002,154-155:635-640. [73] Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. J. Electrochem. Soc. ,1973,120(10):1289-1292. [74] Maier J. Space-charge regions in solid two-phase systems and their conduction contribution-1. Conductance enhancement in the system ionic conductor-inert phase and application on AgCl-Al 2 O 3 and AgCl-SiO 2 [J]. J. Phys. Chem. Solids ,1985,46(3):309-320. [75] Maier J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry ,1995,23(3):171-263. [76] Debierre J M,Knauth P,Albinet G. Enhanced conductivity in ionic conductor-insulator composites:Experiments and numerical model[J]. Appl. Phys. Lett. ,1997,71(10):1335. [77] Knauth P. Ionic conductor composites:Theory and materials[J]. Journal of Electro Ceramics ,2000,5(2):111-125. [78] Croce F,Appetecchi G B,Persi L, et al . Nanocomposite polymer electrolytes for lithium batteries[J]. Nature ,1998,394(6692):456-458. [79] Bruno Scrosati,Juergen Garche. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources ,2010,195(9):2419-2430. [80] Meyer W H. Polymer electrolytes for lithium-ion batteries[J]. Adv. Mater. ,1998,10(6):439. [81] Lightfoot P,Mehta M A,Bruce P G. Crystal-structure of the polymer electrolyte poly (ethylene oxide) 3 LICF 3 SO 3 [J]. Science ,1993,262(5135):883-885. [82] Abraham K M,Alamgir M. Li + -conductive solid polymer electrolytes with liquid-like conductivity[J]. J. Electrochem. Soc. ,1990,137(5):1657. [83] Gadjourova Z,Andreev Y G,Tunstall D P, et al . Ionic conductivity in crystalline polymer electrolytes[J]. Nature ,2001,412(6846):520-523. [84] Armand M. The history of polymer electrolytes[J]. Solid State Ionics ,1994,69(3-4):309-319. [85] Murata K,Izuchi S,Yoshihisa Y. An overview of the research and development of solid polymer electrolyte batteries[J]. Electrochim. Acta ,2000,45(8-9):1501-1508. [86] Cui Zhenyu,Xu Youyi,Zhu Liping, et al . Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process[J]. J. Membrane Sci. ,2008,325(2):957-963. [87] Pan Chunyue,Zhang Qian,Feng Qing, et al . Effect of catalyst on structure of (PEO) 8 LiClO 4 -SiO 2 composite polymer electrolyte films[J]. Journal of Central South University of Technology ,2008,15(4):438-442. [88] Mahdi Ghelichi,Nader Taheri Qazvini,Seyed Hassan Jafari, et al . Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend:Investigating the effect of lithium salt[J]. Journal of Applied Polymer Science ,2013,129(4):1868-1874. [89] Wieczorek W,Such K,Wycislik H, et al . Modifications of crystalline-structure of PEO polymer electrolytes with ceramic additives[J]. Solid State Ionics ,1989,36(3-4):255-257. [90] Croce F,Curini R,Martinelli A, et al . Physical and chemical properties of nano composite polymer electrolytes[J]. Journal of Physical Chemistry B ,1999,103(48):10632-10638. [91] Quartarone E,Mustarelli P,Magistris A. PEO-based composite polymer electrolytes[J]. Solid State Ionics ,1998,110(1-2):1-14. [92] Li Q,Sun H Y,Takeda Y, et al . Interface properties between a lithium metal electrode and a poly (ethylene oxide) based composite polymer electrolyte[J]. Journal of Power Sources ,2001,94(2):201-205. [93] Anurova N A,Blatov V A. Analysis of ion-migration paths in inorganic frameworks by means of tilings and voronoi-dirichlet partition:A comparison[J]. Acta Crystallographica Section B : Structural Science ,2009,65:426-434. [94] Nuspl G,Takeuchi T,Weiss A, et al . Lithium ion migration pathways in LiTi 2 (PO 4 ) 3 and related materials[J]. Journal of Applied Physics ,1999,86(10):5484-5491. [95] Filso M O,Turner M J,Gibbs G V, et al . Visualizing lithium-ion migration pathways in battery materials[J]. Chemistry-A European Journal ,2013,19(46):15535-15544. [96] Brown I D. Recent developments in the methods and applications of the bond valence model[J]. Chemical Reviews ,2009,109(12):6858-6866. [97] Blatov V A,Shevchenko A P. Analysis of voids in crystal structures:The methods of 'dual' crystal chemistry[J]. Acta Crystallographica Section A ,2003,59:34-44. [98] Adams S,Rao R P. High power lithium ion battery materials by computational design[J]. Phys. Status Solid A ,2011,208(8):1746-1753. [99] Gao J,Chu G,He M, et al . Screening possible solid electrolytes by calculating the conduction pathways using bond valence method[J]. Sci. China-Phys. Mech. Astron. ,2014,doi:10.1007/s11433-014-5511-4. [100] Dissanayake M A K L,Bandara L R A K,Karaliyadda L H, et al . Thermal and electrical properties of solid polymer electrolyte PEO 9 Mg(ClO 4 ) 2 incorporating nano-porous Al 2 O 3 filler[J]. Solid State Ionics ,2006,177(3-4):343-346. [101] Shannon R D,Taylor B E,English A D, et al . New Li solid electrolytes[J]. Electrochimica Acta ,1977,22(7):783-796. [102] Shimura T,Tokiwa Y,Iwahara H. Protonic conduction in lanthanum strontium aluminate and lanthanum mobate-based oxides at elevated temperatures[J]. Solid State Ionics ,2002,154:653-658. [103] Rao R P,Reddy M V,Adams S, et al . Preparation and mobile ion transport studies of Ta and Nb doped Li 6 Zr 2 O 7 Li-fast ion conductors[J]. Materials Science and Engineering B : Advanced Functional Solid-State Materials ,2012,177(1):100-105. [104] Pantyukhina M I,Zelyutin G V,Batalov N N, et al . Effect of substituting 6Li for 7Li on ionic conductivity of α-Li 3 BO 3 [J]. Russian Journal of Electrochemistry ,2000,36(7):792-795. [105] Pantyukhina M I,Obrosov V P,Stepanov A P, et al . Study of ion transport in Li 2 ZrO 3 solid electrolytes with different lithium isotope ratios[J]. Crystallography Reports ,2004,49(4):676-679. [106] Liu J,Xu J Y,Lin Y, et al . All-solid-state lithium ion battery:Research and industrial prospects[J]. Acta Chimica Sinica ,2013,71(6):869-878. [107] Yamamoto K,Iriyama Y,Asaka T, et al . Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/ solid-state-electrolyte interface during initial charge-discharge reaction[J]. Electrochemistry Communications ,2012,20:113-116. [108] Yamada H,Oga Y,Saruwatari I, et al . Local structure and ionic conduction at interfaces of electrode and solid electrolytes[J]. J. Electrochem. Soc. ,2012,159(4):A380-A385. [109] Woo J H,Trevey J E,Cavanagh A S, et al . Nanoscale interface modification of LiCoO 2 by Al 2 O 3 atomic layer deposition for solid-state Li batteries[J]. Journal of the Electrochemical Society ,2012,159(7):A1120-A1124. [110] Tan J J,Tiwari A. Synthesis of cubic phase Li 7 La 3 Zr 2 O 12 electrolyte for solid-state lithium-ion batteries[J]. Electrochemical and Solid State Letters ,2012,15(3):A37-A39. [111] Shin B R,Jung Y S. All-solid-state rechargeable lithium batteries using LiTi 2 (PS 4 ) 3 cathode with Li 2 S-P 2 S 5 solid electrolyte[J]. Journal of the Electrochemical Society ,2014,161(1):A154-A159. [112] Santhanagopalan D,Qian D,McGilvray T, et al . Interface limited lithium transport in solid-state batteries[J]. Journal of Physical Chemistry Letters ,2014,5(2):298-303. [113] Sakuda A,Nakamoto N,Kitaura H, et al . All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO 2 prepared by thermal decomposition of dithiocarbamato complexes[J]. Journal of Materials Chemistry ,2012,22(30):15247-15254. [114] Sagane F,Ikeda K,Okita K, et al . Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface[J]. Journal of Power Sources ,2013,233:34-42. [115] Ruzmetov D,Oleshko V P,Haney P M, et al . Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries[J]. Nano Letters ,2012,12(1):505-515. [116] Ohtomo T,Hayashi A, Tatsumisago M, et al . All-solid-state lithium secondary batteries using the 75Li 2 S.25P 2 S 5 glass and the 70Li 2 S.30P 2 S 5 glass-ceramic as solid electrolytes[J]. Journal of Power Sources ,2013,233:231-235. [117] Ohtomo T,Hayashi A,Tatsumisago M, et al . All-solid-state batteries with Li 2 O-Li 2 S-P 2 S 5 glass electrolytes synthesized by two-step mechanical milling[J]. Journal of Solid State Electrochemistry ,2013,17(10):2551-2557. [118] Ohta S,Komagata S,Seki J, et al . All-solid-state lithium ion battery using garnet-type oxide and Li 3 BO 3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources ,2013,238:53-59. [119] Noh S,Kim J,Eom M, et al. Surface modification of LiCoO 2 with Li 3 x La 2/3- x TiO 3 for all-solid-state lithium ion batteries using Li 2 S-P 2 S 5 glass-ceramic[J]. Ceramics International ,2013,39(7):8453-8460. [120] Liu Jin,Xu Junyi,Lin Yue, et al . All-solid-state lithium ion battery:Research and industrial prospects[J]. Acta Chimica Sinica ,2013,71(6):869. [121] Chiku M,Tsujiwaki W,Higuchi E, et al . Determination of the rate-determining step in the electrochemical oxidation of Li metal at the Li negative electrode/Li 2 S-P 2 S 5 solid electrolyte interface[J]. Journal of Power Sources ,2013,244:675-682. [122] Amiki Y,Sagane F,Yamamoto K, et al . Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet[J]. Journal of Power Sources ,2013,241:583-591. [123] Aldiss M I. Multi-layered polymer electrolytes towards interfacial stability in lithium ion batteries[J]. Journal of Power Sources ,2001,94(2):219-224. [124] Xu Xiaoxiong(许晓雄),Qiu Zhijun(邱志军),Guan Yibiao(官亦标),Huang Zhen(黄祯),Jin Yi(金翼). All-solid-state lithium-ion batteries:State-of-the-artdevelopment and perspective[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(4):331-341. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[7] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[8] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[14] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
[15] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||