Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (5): 659-667.doi: 10.12028/2095-4239.2016.0036
Previous Articles Next Articles
ZHANG Qiang1,2, YAO Xiayin1,2, ZHANG Hongzhou3, ZHANG Lianqi3, XU Xiaoxiong1,2
Received:
2016-07-04
Revised:
2016-07-19
Online:
2016-09-01
Published:
2016-09-01
ZHANG Qiang1,2, YAO Xiayin1,2, ZHANG Hongzhou3, ZHANG Lianqi3, XU Xiaoxiong1,2. Research progress on interfaces of all solid state lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 659-667.
[1] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. [2] http://china.nikkeibp.com.cn/news/elec/64481-20130130.html. [3] 许晓雄,邱志军,官亦标. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术,2013,2(4):331-341. XU Xiaoxiong,QIU Zhijun,GUAN Yibiao,et al. All-solid-state lithium-ion batteries:State-of-the-art development and perspective[J]. Energy Storage Science and Technology,2013,2(4):331-341. [4] AGRAWAL R C,GUPTA R K. Superionic solid:Composite electrolyte phase–An overview[J]. Journal of Materials Science,1999,34(6):1131-1162. [5] MAIER J. Nanoionics:Ion transport and electrochemical storage in confined systems[J]. Nat. Mater.,2005,4(11):805-815. [6] AONO H,SUGIMOTO E,SADAOKA Y,et al. The electrical properties of ceramic electrolytes for LiMxTi2−x(PO4)3+yLi2O, M = Ge, Sn, Hf, and Zr systems[J]. Journal of the Electrochemical Society,1993,140(7):1827-1833. [7] 黄祯,杨菁,陈晓添. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术,2015,4(1):1-18. HUANG Zhen,YANG Jing,CHEN Xiaotian,et al. Research progress of inorganic solid electrolyte in foundmental and application field[J]. Energy Storage Science and Technology,2015,4(1):1-18. [8] ZHU Y,HE X,MO Y. First principles study on electrochemical and chemical stability of the solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A,2016,9(4):3253-3266. [9] MAIER J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry,1995,23(3):171-263. [10] WOO J H,TREVEY J E,CAVANAGH A S,et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries[J]. Journal of the Electrochemical Society,2012,159(7):A1120-A1124. [11] YAO X,HUANG B,YIN J,et al. All-solid-state lithium batteries with inorganic solid electrolytes:Review of fundamental science[J]. Chinese Physics B,2016,25(1):212-225. [12] OKUMURA T,NAKATSUTSUMI T,INA T,et al. Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode-solid electrolyte interface for all solid state lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(27):10051-10060. [13] OHTA N,TAKADA K,ZHANG L,et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials,2006,18(17):2226-2229. [14] OHTA N,TAKADA K,SAKAGUCHI I,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications,2007,9(7):1486-1490. [15] SAKUDA A,KITAURA H,HAYASHI A,et al. Modification of interface between LiCoO2 electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers[J]. Journal of the Electrochemical Society,2009,156(1):A27-A32. [16] SAKUDA A,HAYASHI A,OHTOMO T,et al. All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes[J]. Journal of Power Sources,2011,196(16):6735-6741. [17] SAKUDA A,HAYASHI A,TATSUMISAGO M. Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials,2010,22(3):949-956. [18] XU X,TAKADA K,WATANABE K,et al. Self-organized core-shell structure for high-power electrode in solid-state lithium batteries[J]. Chemistry of Materials,2011,23(17):3798-3804. [19] XU X,TAKADA K,FUKUDA K,et al. Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte[J]. Energy & Environmental Science,2011,4(9):3509-3512. [20] PENG G,YAO X,WAN H,et al. Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte[J]. Journal of Power Sources,2016,307:724-730. [21] OHTA S,KOBAYASHI T,SEKI J,et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. Journal of Power Sources,2012,202:332-335. [22] OHTA S,KOMAGATA S,SEKI J,et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources,2013,238:53-56. [23] HOSHINA K,DOKKO K,KANAMURA K. Investigation on electrochemical interface between Li4Ti5O12 and Li1+xAlxTi2−x( PO4)3 NASICON-type solid electrolyte[J]. Journal of the Electrochemical Society,2005,152(11):A2138-A2142. [24] DOKKO K,HOSHINA K,NAKANO H,et al. Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2−x( PO4)3 NASICON-type solid electrolyte[J]. Journal of Power Sources,2007,174(2):1100-1103. [25] HOSHINA K,YOSHIMA K,KOTOBUKI M,et al. Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol-gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2−x( PO4)3 solid electrolyte[J]. Solid State Ionics,2012,209-210:30-35. [26] SAKUDA A,KITAURA H,HAYASHI A,et al. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses[J]. Electrochemical and Solid State Letters,2008,11(1):A1-A3. [27] SAKUDA A,HAYASHI A,TATSUMISAGO M. Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O-TiO2 films on LiCoO2 electrode[J]. Journal of Power Sources,2010,195(2):599-603. [28] MACHIDA N,KASHIWAGI J,NAITO M,et al. Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials[J]. Solid State Ionics,2012,225:354-358. [29] SAKUDA A,NAKAMOTO N,KITAURA H,et al. All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamato complexes[J]. Journal of Materials Chemistry,2012,22(30):15247-15254. [30] KIM J,KIM M,NOH S,et al. Enhanced electrochemical performance of surface modified LiCoO2 for all-solid-state lithium batteries[J]. Ceramics International,2016,42(2,Part A):2140-2146. [31] SAKUDA A,KITAURA H,HAYASHI A,et al. Modification of interface between LiCoO2 electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers[J]. Journal of the Electrochemical Society,2009,156(1):A27-A32. [32] ITO S,FUJIKI S,YAMADA T,et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources,2014,248:943-950. [33] ITO Y,SAKURAI Y,YUBUCHI S,et al. Application of LiCoO2 particles coated with lithium ortho-oxosalt thin films to sulfide-type all-solid-state lithium batteries[J]. Journal of the Electrochemical Society,2015,162(8):A1610-A1616. [34] LU D,SHAO Y,LOZANO T,et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Advanced Energy Materials,2015,5(3):doi: 10.1002/ aenm. 201400993. [35] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nat. Mater.,2011,10(9):682-686. [36] WENZEL S,LEICHTWEISS T,KR GER D,et al. Interphase formation on lithium solid electrolytes-an in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics,2015,278:98-105. [37] WENZEL S,WEBER D A,LEICHTWEISS T,et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics,2016,286:24-33. [38] WENZEL S,RANDAU S,LEICHTWEI T,et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials,2016,28(7):2400-2407. [39] ONG S P,MO Y,RICHARDS W D,et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionic conductors[J]. Energy & Environmental Science,2013,6(1):148-156. [40] SHIN B R,NAM Y J,OH D Y,et al. Comparative study of TiS2/Li-in all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochimica Acta,2014,146:395-402. [41] SAKUMA M,SUZUKI K,HIRAYAMA M,et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics,2016,285:101-105. [42] OGAWA M,KANDA R,YOSHIDA K,et al. High-capacity thin film lithium batteries with sulfide solid electrolytes[J]. Journal of Power Sources,2012,205:487-490. [43] WOLFENSTINE J,ALLEN J L,READ J,et al. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature[J]. Journal of Materials Science,2013,48(17):5846-5851. [44] DU F,ZHAO N,LI Y,et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources,2015,300:24-28. [45] HASEGAWA S,IMANISHI N,ZHANG T,et al. Study on lithium/air secondary batteries-stability of NASICON-type lithium ion conducting glass-ceramics with water[J]. Journal of Power Sources,2009,189(1):371-377. [46] KOTOBUKI M,HOSHINA K,KANAMURA K. Electrochemical properties of thin TiO2 electrode on Li1 + xAlxGe2 − x( PO4)3 solid electrolyte[J]. Solid State Ionics,2011,198(1):22-25. [47] LIANG Z,LIN D,ZHAO J,et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences,2016,113(11):2862-2867. [48] LIN D,LIU Y,LIANG Z,et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat. Nano,2016,11(7):626-632. [49] KOTOBUKI M,HOSHINA K,KANAMURA K. Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2−x(PO4)3 solid electrolyte[J]. Solid State Ionics,2011,198(1):22-25. [50] ITO S,NAKAKITA M,AIHARA Y,et al. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent[J]. Journal of Power Sources,2014,271:342-345. [51] MINAMI K,MIZUNO F,HAYASHI A,et al. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ionics,2007,178(11/12):837-841. [52] MINAMI K,HAYASHI A,TATSUMISAGO M. Crystallization process for superionic Li7P3S11 glass-ceramic electrolytes[J]. Journal of the American Ceramic Society,2011,94(6):1779-1783. [53] MIZUNO F,HAYASHI A,TADANAGA K,et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials,2005,17(7):918-921. [54] MURUGAN R,THANGADURAI V,WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition,2007,46(41):7778-7781. [55] KOTOBUKI M,KANAMURA K,SATO Y,et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte[J]. Journal of Power Sources,2011,196(18):7750-7754. [56] BUSCHMANN H,BERENDTS S,MOGWITZ B,et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O [57] WOLFENSTINE J,RANGASAMY E,ALLEN J L,et al. High conductivity of dense tetragonal Li7La3Zr2O12[J]. Journal of Power Sources,2012,208:193-196. [58] KOTOBUKI M,KOISHI M. Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte[J]. Ceramics International,2015,41(7):8562-8567. [59] KOTOBUKI M,KOISHI M,KATO Y. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J]. Ionics,2013,19(12):1945-1948. [60] XU X,WEN Z,YANG X,et al. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique[J]. Materials Research Bulletin,2008,43(8/9):2334-2341. [61] XU X,WEN Z,WU X,et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O(x=0.0—0.20) with good electrical and electrochemical properties[J]. Journal of the American Ceramic Society,2007,90(9):2802-2806. [62] ZHU Y,ZHANG Y,LU L. Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic[J]. Journal of Power Sources,2015,290:123-129. |
[1] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[2] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[3] | HUANG Xiao, WU Linbin, HUANG Zhen, LIN Jiu, XU Xiaoxiong. Characterization and testing of key electrical and electrochemical properties of lithium-ion solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(2): 479-500. |
[4] | SUN Huajun1,2, HONG Tingting1, LIU Xiaofang3, SUI Huiting2, LIU Pengdong1. Improvement of photovoltaic properties of bismuth ferrite film based solar cell using organic and inorganic interface layers [J]. Energy Storage Science and Technology, 2017, 6(6): 1340-. |
[5] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
[6] | XU Xiaoxiong, QIU Zhijun, GUAN Yibiao, HUANG Zhen, JIN Yi. All-solid-state lithium-ion batteries:State-of-the-art development and perspective [J]. Energy Storage Science and Technology, 2013, 2(4): 331-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||