Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 841-854.doi: 10.12028/j.issn.2095-4239.2017.0099
Previous Articles Next Articles
WANG Hao, BEN Liubin, LIN Mingxiang, CHEN Yuyang, HUANG Xuejie
Received:
2017-06-09
Online:
2017-09-01
Published:
2017-09-01
WANG Hao, BEN Liubin, LIN Mingxiang, CHEN Yuyang, HUANG Xuejie. Research progress on high voltage cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 841-854.
[1] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. [2] RAVET N, CHOUINARD Y, MAGNAN J F, et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources, 2001, 97-98: 503-507. [3] AMINE K, TUKAMOTO H, YASUDA H, et al. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries[J]. Journal of the Electrochemical Society, 1996, 143(5): 1607-1613. [4] ZHONG Q M, BONAKDARPOUR A, ZHANG M J, et al. Synthesis and electrochemistry of LiNixMn2xO4[J]. Journal of the Electrochemical Society, 1997, 144(1): 205-213. [5] ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22(3): 691-714. [6] PARK O K, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy & Environmental Science, 2011, 4(5): 1621-1633. [7] LIU D, ZHU W, TROTTIER J, et al. Spinel materials for high-voltage cathodes in Li-ion batteries[J]. RSC Advances, 2014, 4(1): 154-167. [8] KIM J H, MYUNG S T, SUN Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery[J]. Electrochimica Acta, 2004, 49(2): 219-227. [9] YOON T, PARK S, MUN J, et al. Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature[J]. Journal of Power Sources, 2012, 215: 312-316. [10] MANTHIRAM A, CHEMELEWSKI K,LEE E S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4): 1339-1350. [11] PARK S B, SHIN H C, LEE W G, et al. Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides[J]. Journal of Power Sources, 2008, 180(1): 597-601. [12] DAI Y L, CAI L,WHITE R E. Capacity fade model for spinel LiMn2O4 electrode[J]. Journal of the Electrochemical Society, 2013, 160(1): A182-A190. [13] BRUTTI S, GRECO G, REALE P, et al. Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries[J]. Electrochimica Acta, 2013, 106: 483-493. [14] CHEN Y, SUN Y, HUANG X. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping[J]. Computational Materials Science, 2016, 115: 109-116. [15] KIM J H, MYUNG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-3m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914. [16] SONG J, SHIN D W, LU Y, et al. Role of oxygen vacancies on the performance of Li[Ni0.5xMn1.5+x]O4(x=0, 0.05 and 0.08) spinel cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(15): 3101-3109. [17] BACON G E. Coherent neutron scattering amplitudes[J]. Acta Crystallographica Section A, 1972, 28(4): 357-358. [18] AMDOUNI N, ZAGHIB K, GENDRON F, et al. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry[J]. Ionics, 2006, 12(2): 117-126. [19] LIN M X, BEN L B, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303. [20] REED J, CEDER G. Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2[J]. Electrochemical and Solid State Letters, 2002, 5(7): A145-A148. [21] AMMUNDSEN B, ROZIERE J, ISLAM M S. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganates[J]. Journal of Physical Chemistry B, 1997, 101(41): 8156-8163. [22] XU J, CHEN G. Effects of doping on the electronic properties of LiFePO4: A first-principles investigation[J]. Physica B: Condensed Matter, 2010, 405(3): 803-807. [23] WANG J, LIN W, WU B, et al. Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 145: 245-253. [24] YANG M C, XU B, CHENG J H, et al. Electronic, structural, and electrochemical properties of LiNixCuyMn2xyO4(0<x<0.5, 0<y<0.5) high-voltage spinel materials[J]. Chemistry of Materials, 2011, 23(11): 2832-2841. [25] SHA O, QIAO Z, WANG S, et al. Improvement of cycle stability at elevated temperature and high rate for LiNi0.5xCuxMn1.5O4 cathode material after Cu substitution[J]. Materials Research Bulletin, 2013, 48(4): 1606-1611. [26] MILEWSKA A, KONDRACKI Ł, MOLENDA M, et al. Structural, transport and electrochemical properties of LiNi0.5yCuyMn1.5O4δ spinel cathode materials[J]. Solid State Ionics, 2014, 267: 27-31. [27] LIU M H, HUANG H T, LIN C M, et al. Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries[J]. Electrochimica Acta, 2014, 120: 133-139. [28] LAFONT U, LOCATI C, BORGHOLS W J H, et al. Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: Structural, electrochemical and in situ investigation[J]. Journal of Power Sources, 2009, 189(1): 179-184. [29] WAGEMAKER M, OOMS F G B, KELDER E M, et al. Extensive migration of Ni and Mn by lithiation of ordered LiMg0.1Ni0.4Mn1.5O4 spinel[J]. Journal of the American Chemical Society, 2004, 126(41): 13526-13533. [30] OH S W, MYUNG S T, KANG H B, et al. Effects of Co doping on LiNi0.5CoxMn1.5xO4 spinel materials for 5 V lithium secondary batteries via Co-precipitation[J]. Journal of Power Sources, 2009, 189(1): 752-756. [31] LI D, ITO A, KOBAYAKAWA K, et al. Structural and electrochemical characteristics of LiNi0.5xCo2xMn1.5xO4 prepared by spray drying process and post-annealing in O2[J]. Journal of Power Sources, 2006, 161(2): 1241-1246. [32] JANG M W, JUNG H G, SCROSATI B, et al. Improved Co-substituted, LiNi0.5xCo2xMn1.5xO4 lithium ion battery cathode materials[J]. Journal of Power Sources, 2012, 220: 354-359. [33] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(SEP1): 751-767. [34] KAWAI H, NAGATA M, TUKAMOTO H, et al. A new lithium cathode LiCoMnO4: Toward practical 5 V lithium batteries[J]. Electrochemical and Solid State Letters, 1998, 1(5): 212-214. [35] KAWAI H, NAGATA M, KAGEYAMA H, et al. 5 V lithium cathodes based on spinel solid solutions Li2Co1+xMn3xO8: 1≤x≤1[J]. Electrochimica Acta, 1999, 45(1/2): 315-327. [36] JANG M W, JUNG H G, SCROSATI B, et al. Improved Co-substituted, LiNi0.5xCo2xMn1.5xO4 lithium ion battery cathode materials[J]. Journal of Power Sources, 2012, 220: 354-359. [37] LIU G, XIE H, LIU L, et al. Synthesis and electrochemical performances of spinel LiCr0.1Ni0.4Mn1.5O4 compound[J]. Materials Research Bulletin, 2007, 42(11): 1955-1961. [38] YI T F, LI C Y, ZHU Y R, et al. Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials[J]. Journal of Solid State Electrochemistry, 2009, 13(6): 913-919. [39] WANG W, LIU H, WANG Y, et al. Effects of chromium doping on performance of LiNi0.5Mn1.5O4 cathode material[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 2066-2070. [40] ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4[J]. Electrochimica Acta, 2011, 56(18): 6554-6561. [41] YI T F, XIE Y, ZHU Y R, et al. High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries[J]. Journal of Power Sources, 2012, 211: 59-65. [42] LU C Z, FEY G T K. Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries[J]. Journal of Physics and Chemistry of Solids, 2006, 67(4): 756-761. [43] OH S W, PARK S H, KIM J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution[J]. Journal of Power Sources, 2006, 157(1): 464-470. [44] WANG H L, SHI Z Q, LI J W, et al. Direct carbon coating at high temperature on LiNi0.5Mn1.5O4 cathode: Unexpected influence on crystal structure and electrochemical performances[J]. Journal of Power Sources, 2015, 288: 206-213. [45] NIKETIC S, COUILLARD M, MACNEIL D, et al. Improving the performance of high voltage LiMn1.5Ni0.5O4 cathode material by carbon coating[J]. Journal of Power Sources, 2014, 271: 285-290. [46] YANG T, ZHANG N, LANG Y, et al. Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4058-4064. [47] KIM J W, KIM D H, OH D Y, et al. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 1254-1262. [48] LI X, GUO W, LIU Y, et al. Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: Ionic liquid assisted synthesis and the effect of CuO coating[J]. Electrochimica Acta, 2014, 116: 278-283. [49] PANG Q, FU Q, WANG Y, et al. Improved electrochemical properties of spinel LiNi0.5Mn1.5O4 cathode materials by surface modification with RuO2 nanoparticles[J]. Electrochimica Acta, 2015, 152: 240-248. [50] FAN Y, WANG J, TANG Z, et al. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries[J]. Electrochimica Acta, 2007, 52(11): 3870-3875. [51] LEE Y, KIM T Y, KIM D W, et al. Coating of spinel LiNi0.5Mn1.5O4 cathodes with SnO2 by an electron cyclotron resonance metal-organic chemical vapor deposition method for high-voltage applications in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2015, 736: 16-21. [52] SUN Y K, YOON C S,OH I H. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures[J]. Electrochimica Acta, 2003, 48(5): 503-506. [53] WU H, BELHAROUAK I, ABOUIMRANE A, et al. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(9): 2909-2913. [54] WEN W, YANG X, WANG X, et al. Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating[J]. Journal of Solid State Electrochemistry, 2015, 19(4): 1235-1246. [55] WANG J, YAO S, LIN W, et al. Improving the electrochemical properties of high-voltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries[J]. Journal of Power Sources, 2015, 280: 114-124. [56] SUN H, XIA B, LIU W, et al. Significant improvement in performances of LiNi0.5Mn1.5O4 through surface modification with high ordered Al-doped ZnO electro-conductive layer[J]. Applied Surface Science, 2015, 331: 309-314. [57] ZHAO G, LIN Y, ZHOU T, et al. Enhanced rate and high-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium ion battery[J]. Journal of Power Sources, 2012, 215: 63-68. [58] LIN Y, YANG Y, YU R, et al. Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with superconducting YBa2Cu3O7[J]. Journal of Power Sources, 2014, 259: 188-194. [59] LEE Y, MUN J, KIM D W, et al. Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol-gel method for lithium ion batteries[J]. Electrochimica Acta, 2014, 115: 326-331. [60] CHAE J S, YOON S B, YOON W S, et al. Enhanced high-temperature cycling of Li2O-2B2O3-coated spinel-structured LiNi0.5Mn1.5O4 cathode material for application to lithium-ion batteries[J]. Journal of Alloys and Compounds, 2014, 601: 217-222. [61] CHONG J, XUN S, SONG X, et al. Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries[J]. Nano Energy, 2013, 2(2): 283-293. [62] CHENG F, XIN Y, HUANG Y, et al. Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2[J]. Journal of Power Sources, 2013, 239: 181-188. [63] KIM Y, YOON Y, SHIN D. Charge-discharge characteristics of nanocrystalline Co3O4 powders via aerosol flame synthesis[J]. Solid State Ionics, 2011, 192(1): 308-312. [64] QIAO Z, SHA O, TANG Z Y, et al. Surface modification of LiNi0.5Mn1.5O4 by LiCoO2/Co3O4 composite for lithium-ion batteries[J]. Materials Letters, 2012, 87: 176-179. [65] LIU D, TROTTIER J, CHAREST P, et al. Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries[J]. Journal of Power Sources, 2012, 204(0): 127-132. [66] ZHU Y R, YI T F, ZHU R S, et al. Increased cycling stability of Li4Ti5O12-coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries[J]. Ceramics International, 2013, 39(3): 3087-3094. [67] YI T F, SHU J, ZHU Y R, et al. Structure and electrochemical performance of Li4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4 spinel as 5 V materials[J]. Electrochemistry Communications, 2009, 11(1): 91-94. [68] ARREBOLA J, CABALLERO A, HERNÁN L, et al. Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries[J]. Journal of the Electrochemical Society, 2007, 154(3): A178. [69] XIONG L Z, LIU W P, WU Y X, et al. Synthesis and characterization of LiNi0.49Mn1.49Y0.02O4@Ag by electroless plating technique[J]. Applied Surface Science, 2015, 328: 531-535. [70] WANG H, BEN L, YU H, et al. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. J. Mater. Chem. A, 2017, 5(2): 822-834. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[6] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[7] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[8] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[9] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[10] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[11] | Qiang LI, Junnan WANG, Hong SUN. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery [J]. Energy Storage Science and Technology, 2021, 10(6): 2097-2105. |
[12] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[13] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[14] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[15] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||