Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (1): 75-82.doi: 10.12028/j.issn.2095-4239.2018.0189
Previous Articles Next Articles
GAO Xiang1, ZHU Zirui2
Received:
2018-09-11
Revised:
2018-09-28
Online:
2019-01-01
Published:
2019-01-01
CLC Number:
GAO Xiang, ZHU Zirui. Applications of atomic force microscopy in lithium ion batteries research[J]. Energy Storage Science and Technology, 2019, 8(1): 75-82.
[1] 罗倩, 巢亚军, 渠冰, 等. 锂离子电池中SEI膜的研究方法[J]. 电源技术, 2015, 39(5):1086-1090. LUO Q, CHAO Y J, QU B, et al. Research technologies of solid electrolyte interphase in Li-ion batteries[J]. Chinese Journal of Power Sources, 2015, 39(5):1086-1090. [2] BINNIG G, ROHRER H. Scaning tunneling microscope[J]. Helvetica, 1982, 55(4):726-729. [3] BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscope[J]. Phys. Rev. Lett., 1982, 49(1):57-61. [4] BINNIG G, ROHRER H, GERBER C, et al. 7×7 Reconstruction on Si(111) resolved in real space[J]. Phys. Rev. Lett., 1983, 50(2):120-123. [5] 白春礼. 扫描隧道显微术及其应用[M]. 上海:上海科学技术出版社, 1994. BAI C L. Scanning tunneling microscopy and its application[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1994. [6] BINNIG G, QUATE C F, GERBER C, et al. Atomic force microscope[J]. Phys. Rev. Lett., 1986, 56(9):930-933. [7] 于凉云, 张奇, 袁淑军. 原子力显微镜(AFM)应用于纳米科学中的研究进展[J]. 山东化工, 2016, 45(24):39-43. YU L Y, ZHANG Q, YUAN S J. A review of atomic force microscopy applied in nanoscience[J]. Shandong Chemical Industry, 2016, 45(24):39-43. [8] 刘波, 马立, 谢炜, 等. 原子力显微镜技术在细胞研究中的进展[J]. 微纳电子技术, 2013, 50(4):248-254. LIU B, MA L, XIE W, et al. Progress of AFM technology in the study of cells[J]. Micronanoelectronic Technology, 2013, 50(4):248-254. [9] 马梦佳, 陈玉云, 闫志强, 等. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(1):135-144. MA M J, CHEN Y Y, YAN Z Q, et al. Applications of atomic force microscopy in nanobiomaterials research[J]. Progress in Chemistry, 2013, 25(1):135-144. [10] 葛小鹏, 汤鸿霄, 王东升, 等. 原子力显微镜在环境样品研究与表征中的应用与展望[J]. 环境科学学报, 2005, 25(1):5-16. GE X P, TANG H X, WANG D S, et al. Atomic force microscopy and its application in the characterization of environmental samples[J]. Acta Scientiae Circumstantiae, 2005, 25(1):5-17 [11] ALESSANDRINI A, FACCI P. AFM:A versatile tool in biophysics[J]. Meas. Sci. Technol., 2005, 16(6):65-92. [12] HUANG L, SU C M. A tosional resonance mode AFM for in-plane tip surface interactions[J]. Ultramicroscopy, 2004, 100(3):277-285. [13] KASAI T, BHUSHAN B, HUANG L, et al. Topography and phase imaging using the torsional resonance mode[J]. Nanotechnology, 2004, 15(7):doi:10.1088/0957-4484/1517/004. [14] LIU G F, LIU J, SUN H, et al. In situ imaging of on-surface solvent-free molecular single-crystal growth[J]. J. Am. Chem. Soc., 2015, 137(15):4972-4975. [15] LUO D, YANG F, WANG X, et al. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene[J]. Small, 2014, 14(10):2809-2814. [16] LUCAS I T, POLLAK E, KOSTECKI R. In situ AFM studies of SEI formation at a Sn electrode[J]. Electrochem. Commun., 2009, 11(11):2157-2160. [17] LIU X R, DENG X, LIU R R, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy:Solid electrolyte interphase growth and mechanical properties[J]. ACS Appl. Mater. Interfaces, 2014, 6(22):20317-20323. [18] KUMAR R, TOKRANOV A, SHELDON B W, et al. In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes[J]. ACS Energy Lett., 2016, 1(4):689-697. [19] STEINHAUER M, STICH M, KURNIAWAN M, et al. In situ studies of solid electrolyte interphase (SEI) formation on crystalline carbon surfaces by neutron reflectometry and atomic force microscopy[J]. ACS Appl. Mater. Interfaces, 2017, 9:35794-35801. [20] LIU X R, WANG L, WAN L J, et al. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide[J]. ACS Appl. Mater. Interfaces, 2015, 7(18):9573-9580. [21] LIU X R, YAN H J, WANG D, et al. In situ AFM investigation of interfacial morphology of single crystal silicon wafer anode[J]. Acta Phys. -Chim. Sin, 2016, 32(1):283-289. [22] XU W L, VEGUNTA S S, FLAKE J C, et al. Surface-modified silicon nanowire anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(20):8583-8589. [23] ZHANG J, WANG R, YANG X C, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Let., 2012, 12(4):2153-2157. [24] SHIN H, PARK J, HAN S, et al, Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries:Experimental and computational studies[J]. J. Power Sources, 2015, 277:169-179. [25] ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2014(16):13229-13238. [26] KITTA M, SANO H. Real-time observation of Li deposition on a Li electrode with operand atomic force microscopy and surface mechanical imaging[J]. Langmuir, 2017, 33(8):1861-1866. [27] BECKER C R, PROKES S M, LOVE C T. Enhanced lithiation cycle stability of ALD-coated confined a Si microstructures determined using in situ AFM[J]. ACS Appl. Mater. Interfaces, 2016, 8(1):530-537. [28] MOGI R, INABA M, JEONG S K, et al. Effects of some organic additives on lithium deposition in propylene carbonate[J]. J. Electrochem. Soc., 2002, 149(12):A1578-A1583. [29] BECKER C R, STRAWHECKER K E, MCALLISTER Q P, et al. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries[J]. ACS Nano, 2013, 7(10):9173-9182. [30] BREITUNG B, BAUMANN P, SOMMER H, et al. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale, 2016, 8(29):14048-14056. [31] DOMI Y, OCHIDA M, TSUBOUCHI S, et al. In situ AFM study of surface film formation on the edge plane of HOPG for lithiumion batteries[J]. J. Phys. Chem. C, 2011(115):25484-25489. [32] HUANG S Q, WANG S W, HU G H, et al. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives[J]. App. Surf. Sci., 2018, 441(31):265-271. [33] VERDE M G, BAGGETTO L, BALKE N, et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 2016, 10(4):4312-4321. [34] RAMDON S, BHUSHAN B. High resolution morphology and electrical characterization of aged Li-ion battery cathode[J]. J. Colloid Interface Sci., 2012, 380(1):187-191. [35] DEMIROCAK D E, BHUSHAN B. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge[J]. J. Colloid Interface Sci., 2014, 423(6):151-157. [36] PARK J, KALNAUS S, HAN S, et al. In situ atomic force microscopy studies on lithium (de) intercalation-induced morphology changes in LixCoO2 micro-machined thin film electrodes[J]. J. Power Sources, 2013, 222:417-425. [37] VIDU R, QUINLAN F T, STROEVE P. Use of in situ electrochemical atomic force microscopy (EC-AFM) to monitor cathode surface reaction in organic electrolyte[J]. Ind. Eng. Chem. Res., 2002, 41(25):6546-6554. [38] LU W, ZHANG J S, XU J J, et al. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling[J]. ACS Appl. Mater. Interfaces, 2017, 9(22):19313-19318. [39] KANNAN A, RABENBERG L, MANTHIRAM A. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries[J]. Electrochem. Solid-State Lett., 2003, 6(1):A16-A18. [40] KIM Y J, KIM H, KIM B, et al. Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating[J]. Chem. Mater., 2003, 15(7):1505-1511. [41] YAO W T, LONG F, SHAHBAZIAN-YASSAR R. Localized mechanical stress induced ionic redistribution in a layered LiCoO2 cathode[J]. ACS Appl. Mater. Interfaces, 2016, 8(43):29391-29399. [42] SHIM J H, LEE K S, MISSYUL A, et al. Characterization of spinel LixCo2O4-coated LiCoO2 prepared with post-thermal treatment as a cathode material for lithium ion batteries[J]. Chem. Mater., 2015, 27(9):3273-3279. [43] LIANG J Y, ZENG X X, ZHANG X D, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. J. Am. Chem. Soc., 2018, 140(22):6767-6770. [44] NAGPURE S C, BHUSHAN B, BABU S, et al. Scanning spreading resistance characterization of aged Li-ion batteries using atomic force microscopy[J]. Scripta Mater., 2009, 60(11):933-936. [45] MASCARO A, WANG Z, HOVINGTON P, et al. Measuring spatially resolved collective ionic transport on lithium battery cathodes using atomic force microscopy[J]. Nano Lett., 2017, 17(7):4489-4496. [46] WU J X, YANG S, CAI W, et al. Multi-characterization of LiCoO2 cathode films using advanced AFM-based techniques with high resolution[J]. Sci. Rep., 2017, 7(1):11164-11172. |
[1] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[2] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[3] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[4] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[5] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[6] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[7] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[8] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[9] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[10] | Tenghui WANG, Guo CHEN, Xuelin YANG. Review of preparations of amorphous nanostructured silicon powder [J]. Energy Storage Science and Technology, 2021, 10(2): 440-447. |
[11] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[12] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[13] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[14] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[15] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||