Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (3): 443-467.doi: 10.12028/j.issn.2095-4239.2018.0212
Previous Articles Next Articles
ZHANG Jienan1, WANG Junyang1, LÜ Yingchun2, YU Xiqian1,3, LI Hong1,3
Received:
2018-10-20
Revised:
2019-02-20
Online:
2019-05-01
Published:
2019-03-13
CLC Number:
ZHANG Jienan, WANG Junyang, Lyu Yingchun, YU Xiqian, LI Hong. Experimental measurement and analysis methods of polycrystalline X-ray diffraction for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 443-467.
[1] CELESTE A REISS, KHARCHENKO A, GATESHKI M. On the use of laboratory X-ray diffraction equipment for pair distribution function (PDF) studies[J]. Zeitschrift für Kristallographie Crystalline Materials, 2012, 227:257-261. [2] YAMADA A, IWANE N, HARADA Y, et al. Lithium iron borates as high-capacity battery electrodes[J]. Adv. Mater., 2010, 22:3583-3587. [3] YU X Q, HE Y, SUN J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential[J]. Electrochem. Commun., 2009, 11:791-794. [4] CHUPAS P J, CHAPMAN K W, KURTZ C, et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments[J]. J. Appl. Crystallogr., 2008, 41:822-824. [5] 梁敬魁. 粉末衍射法测定晶体结构(第二版)[M]. 北京:科学出版社, 2011. LIANG Jingkui. Determination of crystal structures by powder diffraction method (2nd Edition)[M]. Beijing:Science Press, 2011. [6] 郑振环, 李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M]. 北京:中国建材工业出版社, 2016. ZHENG Zhenhuan, LI Qiang. Rietveld refinement of X-ray polycrystalline diffraction data and introduction of GSAS software[M]. Beijing:China Buliding Materials Press, 2016. [7] MACGLASHAN G S, ANDREEV Y G, BRUCE P G. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6[J]. Nature, 1999, 398:792-794. [8] WANG L, XU H, YAN N, et al. Exploring Brønsted acids confined in the 10-ring channels of the zeolite ferrierite[J]. CrystEngComm., 2018, 20:699-702. [9] GORELIK T E, SCHMIDT M U, KOLB U,et al. Total-scattering pair-distribution function of organic material from powder electron diffraction data[J]. Microsc. Microanal, 2015, 21:459-471. [10] BLIDBERG A, GUSTAFSSON T, TENGSTEDT C,et al. Monitoring LixFeSO4F (x=1, 0.5, 0) phase distributions in operando to determine reaction homogeneity in porous battery electrodes[J]. Chem. Mater., 2017, 29:7159-7169. [11] SCHERF L M, HATTENDORFF J, BUCHBERGER I, et al. Electrochemical synthesis of the allotrope allo-Ge and investigations on its use as an anode material[J]. J. Mater. Chem. A, 2017, 5:11179-11187. [12] RENMAN V, HU S, ERIKSSON R, et al. Ni3Sb4O6F6 and its electrochemical behavior toward lithium-A combination of conversion and alloying reactions[J]. Chem. Mater., 2016, 28:6520-6527. [13] TOBY B H. R factors in Rietveld analysis:How good is good enough?[J]. Powder Diffr., 2006, 21:67-70. [14] LEE E S, NAM K W, HU E, et al. Influence of cation ordering and lattice distortion on the charge-Discharge behavior of LiMn1.5Ni0.5O4 spinel between 50 and 20 V[J]. Chem. Mater., 2012, 24:3610-3620. [15] BAK S M, SHADIKE Z, LIN R, et al. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research[J]. NPG Asia Materials, 2018:563-580. [16] 王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2):327-344. WANG Qiyu, CHU Geng, ZHANG Jienan, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Technology, 2018, 7(2):327-344. [17] 张杰男. 高电压钴酸锂的失效分析与改性研究[D]. 北京:中国科学院物理研究所, 2018. ZHANG Jienan. Failure analysis and modification research of high voltage LiCoO3[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2018. [18] NAM K W, BAK S M, HU E, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2013, 23:1047-1063. [19] MOHANTY D, KALNAUS S, MEISNER R A, et al. Structural transformation of a lithium-rich Li12Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. J. Power Sources, 2013, 229:239-248. [20] LERICHE J B, HAMELET S, SHU J, et al. An electrochemical cell for operando study of lithium batteries using synchrotron radiation[J]. J. Electrochem. Soc., 2010, 157:A606-A610. [21] ROBERTS M R, MADSEN A, NICKLIN C, et al. Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries[J]. J. Phys. Chem. C, 2014, 118:6548-6557. [22] WANG X J, CHEN H Y, YU X Q, et al. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chem. Commun., 2011, 47:7170-7172. [23] LI Y, XU R, REN Y, et al. Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction[J]. Nano Energy, 2016, 19:522-531. [24] GAO J, SHI S, XIAO R, LI H. Synthesis and ionic transport mechanisms of α-LiAlO2[J]. Solid State Ionics, 2016, 286:122-134. [25] LIU Q, GAO M R, LIU Y, et al. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy X-ray scattering[J]. Nano Lett., 2016, 16:715-720. [26] CHEN J, BAI J, CHEN H, et al. In situ hydrothermal synthesis of LiFePO4 studied by synchrotron X-ray diffraction[J]. The Journal of Physical Chemistry Letters, 2011, 2:1874-1878. [27] CRAVILLON J, SCHRÖDER C A, BUX H, et al. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy[J]. CrystEngComm., 2012, 14:492-498. [28] 高健, 吕迎春, 李泓. 锂电池基础科学问题(Ⅲ)-相图与相变[J]. 储能科学与技术, 2013, 2(3):250-266. GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (Ⅲ)-Phase transition and phase diagram[J].Energy Storage Science and Technology, 2013, 2(3):250-266. [29] LUO C, MARTIN M. Stability and defect structure of spinels Li1+xMn2-xO4-δ:In situ investigations on the stability field of the spinel phase[J]. J. Mater. Sci., 2007, 42:1955-1964. [30] DELACOURT C, POIZOT P, TARASCON J M, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0≤ x ≤ 1[J]. Nat. Mater., 2005, 4:254-260. [31] 高健, 吕迎春, 李泓. 锂电池基础科学问题(Ⅳ)-相图与相变(2)[J]. 储能科学与技术, 2013, 2(4):383-401. GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (IV)-Phase transition and phase diagram (2)[J]. Energy Storage Science and Technology, 2013, 2(4):383-401. [32] LYU Y, HU E, XIAO D, et al. Correlations between transition metal chemistry, local structure and global structure in Li2Ru0.5Mn0.5O3 investigated in a wide voltage window[J]. Chemistry of Materials, 2017:9053-9065. [33] LYU Y, ZHAO N, HU E, et al. Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 10-48V[J]. Chemistry of Materials, 2015, 27:5238-5252. [34] SU N, LYU Y, GU R, GUO B. Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries[J]. J. Alloys Compd., 2018, 741:398-403. [35] GIBOT P, CASAS-CABANAS M, LAFFONT L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4[J]. Nat. Mater., 2008, 7:741-747. [36] OMENYA F, MILLER J K, FANG J, et al. Single-phase lithiation and delithiation of simferite compounds Li(Mg,Mn,Fe)PO4[J]. Chem. Mater., 2014, 26:6206-6212. [37] ORIKASA Y, MAEDA T, KOYAMA Y, et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. J. Am. Chem. Soc., 2013, 135:5497-5500. [38] ZHOU Y N, YUE J L, HU E, et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6:doi:10.1002/aenm.201600597. [39] ORIKASA Y, MAEDA T, KOYAMA Y, et al. Transient phase change in two phase reaction between LiFePO4 and FePO4 under battery operation[J]. Chem. Mater., 2013, 25:1032-1039. [40] LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344:doi:10.1126/science. 1252817. [41] BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi08Co015Al005O2 cathode materials[J]. Chem. Mater., 2013, 25:337-351.>0.4Mn0.4O2 Cathode Material for Li-Ion Batteries in a Voltage Range of 1.0–4.8 V[J]. Chemistry of Materials, 27 (2015) 5238-5252. [34] N. Su, Y. Lyu, R. Gu, B. Guo, Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries[J]. J. Alloys Compd., 741 (2018) 398-403. [35] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO(4) [J]. Nat. Mater., 7 (2008) 741-747. [36] F. Omenya, J.K. Miller, J. Fang, B. Wen, R. Zhang, Q. Wang, N.A. Chernova, M.S. Whittingham, Single-Phase Lithiation and Delithiation of Simferite Compounds Li(Mg,Mn,Fe)PO4[J]. Chem. Mater., 26 (2014) 6206-6212. [37] Y. Orikasa, T. Maeda, Y. Koyama, et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. J. Am. Chem. Soc., 135 (2013) 5497-5500. [38] ZHOU Y N, YUE J L, HU E, et al, High‐Rate Charging induced intermediate phases and structural changes of layer‐structured cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6: 1600597. [39] ORIKASA Y, MAEDA T, KOYAMA Y, et al. Transient phase change in two phase reaction between LiFePO4 and FePO4 under battery operation[J]. Chem. Mater., 2013, 25: 1032-1039. [40] LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344: 1252817. [41] BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem. Mater., 2013, 25: 337-351. |
[1] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[2] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[3] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[4] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[5] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[6] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[7] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[8] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[9] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[10] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[11] | Yuxuan XIE, Yunju BAI, Yijun XIAO. Overall capacity allocation of energy storage tram with ground charging piles [J]. Energy Storage Science and Technology, 2021, 10(4): 1388-1399. |
[12] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[13] | Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(3): 958-973. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(2): 393-407. |
[15] | Mengyu TIAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2020 to Nov. 30, 2020) [J]. Energy Storage Science and Technology, 2021, 10(1): 295-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||