Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (5): 975-996.doi: 10.12028/j.issn.2095-4239.2019.0082
SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying
Received:
2019-05-09
Revised:
2019-06-01
Online:
2019-09-01
Published:
2019-06-11
CLC Number:
SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying. Experimental measurement and analysis of Raman/infrared methods for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 975-996.
[1] 张树霖. 拉曼光谱学与低维纳米半导体[M]. 北京:科学出版社, 2008. ZHANG S L. Raman spectroscopy and low-dimensional nanosemiconductors[M]. Beijing:Science Press, 2008. [2] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京:化学工业出版社, 2007. HUANG K L, WANG Z X, LIU S Q. Principle and key technology of lithium ion battery[M]. Beijing:Chemical Industry Press, 2007. [3] 李文俊, 褚赓, 彭佳悦, 等. 锂离子电池基础科学问题(Ⅻ)——表征方法[J]. 储能科学与技术, 2014, 3(6):642-667. LI W J, CHU G, PENG J Y, et al. Fundamental scientific aspects of lithium batteries(Ⅻ)-Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6):642-667. [4] 李琼瑶. FTIR和Raman光谱技术的进展[J]. 现代科学仪器, 2000, 3(1):40-42. LI Q Y. Advances in FTIR and Raman spectral techniques[J]. Modern Scientific Instruments, 2000, 3(1):40-42. [5] NOVAK P, PANITZ J C, JOHO F, et al. Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries[J]. J. Power Sources, 2000, 90(1):52-58. [6] JULIEN C M. Lithium intercalated compounds charge transfer and related properties[J]. Materials Science and Engineering R, 2003, 40(2):47-102. [7] DING Y L, XIE J, CAO G S, et al. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries[J]. Adv. Funct. Mater., 2011, 21(2):348-355. [8] DOEFF M M, HU Y Q, MCLARNON F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochem. Solid-State Lett., 2003, 6(10):A207-A209. [9] DUAN W C, HU Z, ZHANG K, et al. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries[J]. Nanoscale, 2013, 5(14):6485-6490. [10] OKUBO M, HOSONO E, KIM J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. J. Am. Chem. Soc., 2007, 129(23):7444-7452. [11] LIANG X, SERGUEI V S, VALERY V L, et al. Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries[J]. Adv. Funct. Mater., 2018, 28(7):doi:10.1002/adfm.201705836. [12] AMDOUNI N, ZAGHIB K, GENDRON F, et al. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry[J]. Ionics, 2006, 12(2):117-126. [13] WANG L P, LI H, HUANG X J, et al. A comparative study of Fd-3m and P4332 "LiNi0.5Mn1.5O4"[J]. Solid State Ionics, 2011, 193(1):32-38. [14] SONG B, LAI M O, LIU Z W, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries[J]. J. Mater. Chem. A, 2013, 1(34):9954-9965. [15] ZHAO J Q, HUANG R M, GAO W P, et al. An ion-exchange promoted phase transition in a Li-excess layered cathode material for highperformance lithium ion batteries[J]. Adv. Energy Mater., 2015, 5(9):doi:10.1002/aenm.201401937. [16] REDDY A, SRIVASTAVA A, GOWDA S R, et al. Synthesis of nitrogen-doped graphene films for lithium battery application[J]. ACS Nano, 2010, 4(11):6337-6342. [17] MAO Y, DUAN H, XU B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy Environ. Sci., 2012, 5(7):7950-7955. [18] ZHANG Z L, WANG Y H, REN W F, et al. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries[J]. Angew. Chem. Int. Ed., 2014, 53(20):5165-5169. [19] LI H, HUANG X J, CHEN L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(4):181-191. [20] KAVAN L, KALBAC M, ZUKALOVA M, et al. Lithium storage in nanostructured TiO2 made by hydrothermal growth[J]. Chem. Mater., 2004, 16(3):477-485. [21] BRUTTI S, GENTILI V, MENARD H, et al. TiO2-(B) Nanotubes as anodes for lithium batteries:Origin and mitigation of irreversible capacity[J]. Adv. Energy Mater., 2012, 2(3):322-327. [22] LI F H, SONG J F, YANG H F, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology, 2009, 20(45):doi:10.1021/am201541s. [23] AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. The study of surface phenomena related to electrochemical lithium intercalation into Li xMOy host materials (M=Ni, Mn)[J]. J. Electrochem. Soc., 2000, 147(4):1322-1331. [24] WANG Z X, GAO W D, HUANG X J, et al. Spectroscopic studies on interactions and microstructures in propylene carbonate-LiTFSI electrolytes[J]. J. Raman Spectrosc., 2001, 32(11):900-905. [25] ZHUANG G R, XU K, YANG H, et al. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF 6/EC:EMC electrolyte[J]. J. Phys. Chem. B, 2005, 109(37):17567-17573. [26] LIU H J, TONG Y J, KUWATA N, et al. Adsorption of propylene carbonate (PC) on the LiCoO2 surface investigated by nonlinear vibrational spectroscopy[J]. J. Phys. Chem. C, 2009, 113(48):20531-20534. [27] YU L, LIU H J, WANG Y, et al. Preferential adsorption of solvents on the cathode surface of lithium ion batteries[J]. Angew. Chem. Int. Ed., 2013, 52(22):5753-5756. [28] MCCLOSKEY B D, BETHUNE D S, SHELBY R M, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. J. Phys. Chem. Lett., 2011, 2(10):1161-1166. [29] NORBERG N S, LUX S F, KOSTECKI R. Interfacial side-reactions at a LiNi0.5Mn1.5O4 electrode in organic carbonate-based electrolytes[J]. Electrochem. Commun., 2013, 34(1):29-32. [30] SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263):938-943. [31] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Lett., 2017, 2(6):1321-1326. [32] ZHUANG G V, YANG H, ROSS P N, et al. Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate[J]. Electrochem. Solid-State Lett., 2006, 9(2):A64-A68. [33] SANTNER H J, KOREPP C, WINTER M, et al. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries[J]. Anal. Bioanal. Chem., 2004, 379(2):266-271. [34] CORTE D, CAILLON G, JORDY C, et al. Spectroscopic insight into Li-ion batteries during operation:an alternative infrared approach[J]. Adv. Energy Mater., 2016, 6(2):doi:10.1002/aenm.201501768. [35] MAAZI S, NAVARCHIAN A H, KHOSRAVI M, et al. Effect of poly (vinylidene fluoride)/poly (vinyl acetate) blend composition as cathode binder on electrochemical performances of aqueous Li-ion battery[J]. Solid State Ionics, 2018, 320(1):84-91. [36] GAO S Y, SU Y F, BAO L Y, et al. High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder[J]. J. Power Sources, 2015, 298(1):292-298. [37] HAREGEWOIN A M, TERBORG L, ZHANG L, et al. The electrochemical behavior of poly 1-pyrenemethyl methacrylate binder and its effect on the interfacial chemistry of a silicon electrode[J]. J. Power Sources, 2018, 376(1):152-160. [38] MARKEVICH E, SALITRA G, AURBACH D. Influence of the PVDF binder on the stability of LiCoO2 electrodes[J]. Electrochem. Commun., 2005, 7(12):1298-1304. [39] VOGL U S, DAS P K, WEBER A Z, et al. Mechanism of interactions between CMC binder and Si single crystal facets[J]. Langmuir, 2014, 30(34):10299-10307. [40] KLAMOR S, SCHRODER M, BRUNKLAUS G, et al. On the interaction of water-soluble binders and nano silicon particles:Alternative binder towards increased cycling stability at elevated temperatures[J]. Phys. Chem. Chem. Phys., 2015, 17(8):5632-5641. [41] COURTEL F M, NIKETIC S, DUGUAY D, et al. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(4):2128-2134. [42] HUANG H J, HAN G S, XIE J Y, et al. The effect of commercialized binders on silicon oxide anode material for high capacity lithium ion batteries[J]. Int. J. Electrochem. Sci., 2016, 11(10):8697-8708. [43] YUE L, ZHANG L Z, ZHONG H X. Carboxymethyl chitosan:A new water soluble binder for Si anode of Li-ion batteries[J]. J. Power Sources, 2014, 247(1):327-331. [44] QIU L W, SHEN Y D, FAN H B, et al. Carboxymethyl fenugreek gum:Rheological characterization and as a novel binder for silicon anode of lithium-ion batteries[J]. Int. J. Biol. Macromol., 2018, 115(1):672-679. [45] LU L, LOU H M, XIAO Y L, et al. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries[J]. RSC Adv., 2018, 8(9):4604-4609. [46] MARKEVICH E, SHARABI R, BORGEL V, et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) amide ionic liquid during cathodic polarization of lithium and graphite electrodes[J]. Electrochim. Acta, 2010, 55(8):2687-2696. [47] JOHO F, NOVAK P. SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells[J]. Electrochim. Acta, 2000, 45(21):3589-3599. [48] MOSHKOVICH M, COJOCARU M, GOTTLIEB H E, et al. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS[J]. J. Electrochem. Chem., 2001, 497(2):84-96. [49] ZHU Z Q, CHENG F Y, CHEN J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites[J]. J. Mater. Chem. A, 2013, 1(33):9484-9490. [50] GROSS T, GIEBELER L, HESS C. Novel in situ cell for Raman diagnostics of lithium-ion batteries[J]. Rev. Sci. Instrum., 2013, 84(7):doi:10.1063/1.4813263. [51] HOLZAPFEL M, BUQA H, HARDWICK L J, et al. Nano silicon for lithium-ion batteries[J]. Electrochim. Acta, 2006, 52(3):973-978. [52] PENG Z Q, FREUNBERGER S A, HARDWICK L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angew. Chem. Int. Ed., 2011, 50(28):6351-6355. [53] CHEN J J, YUAN R M, FENG J M, et al. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery[J]. Chem. Mater., 2015, 27(6):2048-2055. [54] XIANG H F, WANG H, CHEN C H, et al. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries[J]. J. Power Sources, 2009, 191(2):575-581. [55] BADDOUR-HADJEAN R, NAVONE C, PEREIRA-RAMOS J P. In situ Raman microspectrometry investigation of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films[J]. Electrochim. Acta, 2009, 54(26):6674-6679. [56] CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nat. Commun., 2018, 9:doi:10.1038/s41467-018-05289-z. [57] MATSUO Y, KOSTECKI R, MCLARNON F. Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures[J]. J. Electrochem. Soc., 2001, 148(7):A687-A692. [58] GITTLESON F S, RYU W H, TAYLOR A D. Operando observation of the gold-electrolyte interface in Li-O2 batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(21):19017-19025. [59] ZHAO Z W, SU Y W, PENG Z Q. Probing lithium carbonate formation in trace o-assisted aprotic Li-CO2 batteries using in-situ surface enhanced Raman spectroscopy[J]. J. Phys. Chem. Lett., 2019, 10(3):322-328. [60] HY S, FELIX F, RICK J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3] O2 (0≤ x ≤ 0.5)[J]. J. Am. Chem. Soc., 2014, 136(3):999-1007. [61] ZENG Z C, HUANG S C, WU D Y, et al. Electrochemical tipenhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2015, 137(37):11928-11931. [62] DHAND V, RAO V M, MITTAL G, et al. Synthesis of lithiumgraphite nanotubes-An in-situ CVD approach using organo-lithium as a precursor in the presence of copper[J]. Current Applied Physics, 2015, 15(3):265-273. [63] WANG X, XING W Y, FENG X M, et al. The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins[J]. Chem. Eng. J., 2014, 250(1):214-221. [64] WANG Z X, HUANG X J, CHEN L Q. Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithiumion batteries[J]. J. Electrochem. Soc., 2004, 151(10):A1641-A1652. [65] OTOYAMA M, ITO Y, HAYASHI A, et al. Investigation of state-ofcharge distributions for LiCoO2 composite positive electrodes in allsolid-state lithium batteries by Raman imaging[J]. Chem. Lett., 2016, 45(7):810-812. [66] SAQIB N, SILVA C J, MAUPIN C M, et al. A novel optical diagnostic for in situ measurements of lithium polysulfides in battery electrolytes[J]. Appl. Spectrosc., 2017, 71(7):1593-1599. [67] ITOH T, SATO H, NISHINA T, et al. In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems[J]. J. Power Sources, 1997, 68(2):333-337. [68] JULIEN C M, MASSOT M. Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel[J]. Mater. Sci. Eng. B, 2003, 97(3):217-230. [69] BURBA C M, FRECH R. Raman and FTIR spectroscopic study of LixFePO4 (0≤ x ≤ 1)[J]. J. Electrochem. Soc., 2004, 151(7):A1032-A1038. [70] BADDOUR-HADJEAN R, PEREIRA-RAMOS J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chem. Rev., 2010, 110(3):1278-1319. [71] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53(3):1126-1130. [72] WANG Q, LI H, CHEN L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries[J]. Solid State Ionics, 2002, 152(SI):43-50. [73] IQBAL Z, VEPREK S. Raman-scattering from hydrogenated microcrystalline and amorphous silicon[J]. J. Phy. C, 1982, 15(2):377-392. [74] JULIEN C M, MASSOT M, ZAGHIB K. Structural studies of Li4/3Me5/3O4 (Me=Ti, Mn) electrode materials:Local structure and electrochemical aspects[J]. J. Power Sources, 2004, 136(1):72-79. [75] BADDOUR-HADJEAN R, BACH S, SMIRNOV M, et al. Raman investigation of the structural changes in anatase LixTiO2 upon electrochemical lithium insertion[J]. J. Raman Spectrosc., 2004, 35(7):577-585. [76] BADDOUR-HADJEAN R, PEREIRA-RAMOS J P, NAVONE C, et al. Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films[J]. Chem. Mater., 2008, 20(5):1916-1923. [77] RISTIC M, IVANDA M, POPOVIC S, et al., Dependence of nanocrystalline SnO2 particle size on synthesis route[J]. J. Non-Cryst. Solids, 2002, 303(2):270-280. [78] IKEZAWA Y, ARIGA T. In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface[J]. Electrochim. Acta, 2007, 52(7):2710-2715. [79] JOHO F, NOVÁK P. SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells[J]. Electrochim. Acta, 2000, 45(21):3589-3599. |
[1] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[2] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[3] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[4] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[5] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[6] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[7] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[8] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[9] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[10] | Yuxuan XIE, Yunju BAI, Yijun XIAO. Overall capacity allocation of energy storage tram with ground charging piles [J]. Energy Storage Science and Technology, 2021, 10(4): 1388-1399. |
[11] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[12] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[13] | Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(3): 958-973. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(2): 393-407. |
[15] | Mengyu TIAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2020 to Nov. 30, 2020) [J]. Energy Storage Science and Technology, 2021, 10(1): 295-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||