Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 18-24.doi: 10.12028/j.issn.2095-4239.2019.0159
Previous Articles Next Articles
LI Zhendong1, WANG Zhenhua1,2(), ZHANG Shilong1, FU Chunlin1,2
Received:
2019-07-10
Revised:
2019-08-19
Online:
2020-01-05
Published:
2020-01-10
CLC Number:
LI Zhendong, WANG Zhenhua, ZHANG Shilong, FU Chunlin. Research progress of MOFs and its derivatives as electrode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 18-24.
1 | EDDAOUDI M , KIM J , ROSI N L , et al . Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
2 | RAGON F , CAMPO B , YANG Q , et al . Acid-functionalized UIO-66(Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties[J]. Journal of Materials Chemistry, 2015, 3(7): 3294-3309. |
3 | WANG W , YUAN Y , SUN F X , et al . Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2 [J]. Chinese Chemical Letters, 2014, 25(11): 1407-1410. |
4 | ZHANG T , LIN W B . Metal-organic frameworks for artificial photosynthesis and photocatalysis[J]. Chemical Society Reviews, 2014, 43(16): 5982-5993. |
5 | WANG L , HAN Y Z , FENG X , et al . Metal-organic frameworks for energy storage: Batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2016, 307: 361-381. |
6 | LI G H , YANG H , LI F C , et al . Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal-organic framework[J]. Journal of Materials Chemistry, 2016, 4(24): 9593-9599. |
7 | FEREY G , MELLOTDRAZNIEKS C , SERRE C , et al . A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
8 | FEREY G , LATROCHE M , SERRE C , et al . Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M=Al3+, Cr3+), MIL-53[J]. Chemical Communications, 2003, 24: 2976-2977. |
9 | LI G H , LI F C , YANG H Y , et al . Graphene oxides doped MIL-101(Cr) as anode materials for enhanced electrochemistry performance of lithium ion battery[J]. Inorganic Chemistry Communications, 2016, 64: 63-66. |
10 | 赵思维, 孙雪梅, 孙宇涵, 等 . 基于金属有机骨架材料为前驱物的锂电负极材料α-Fe2O3的合成及性能表征[J]. 科学技术与工程, 2016, 16(30): 1-5. |
ZHAO Siwei , SUN Xuemei , SUN Yuhan , et al . Synthesis and electrochemical performance of α-Fe2O3 anode material based on MOF as precursor[J]. Science Technology and Engineering, 2016, 16(30): 1-5. | |
11 | LI M C , WANG W X , YANG M Y , et al . Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries[J]. RSC Advances, 2015, 5(10): 7356-7362. |
12 | HUANG G , ZHANG F F , ZHANG L L , et al . Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes[J]. Journal of Materials Chemistry, 2014, 2(21): 8048-8053. |
13 | LUO Y M , SUN L X , XU F , et al . Porous carbon derived from metal-organic framework as an anode for lithium-ion batteries with improved performance[J]. Key Engineering Materials, 2017, 727: 705-711. |
14 | LI C , CHEN T Q , XU W J , et al . Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2015, 3(10): 5585-5591. |
15 | BAI Z C , ZHANG Y H , ZHANG Y W , et al . MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery[J]. Journal of Materials Chemistry, 2015, 3(10): 5266-5269. |
16 | QIU Y C , XU G L , YAN K Y , et al . Morphology-conserved transformation: Synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties[J]. Journal of Materials Chemistry, 2011, 21(17): 6346-6353. |
17 | ZHANG X , QIAN Y T , ZHU Y C , et al . Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance[J]. Nanoscale, 2014, 6(3): 1725-1731. |
18 | DENG Y F , LI Z , SHI Z N , et al . Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries[J]. RSC Advances, 2012, 2(11): 4645-4647. |
19 | QU Q T , GAO T , ZHENG H Y , et al . Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries[J]. Carbon, 2015, 92: 119-125. |
20 | LIU J , WU C , XIAO D D , et al . MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage[J]. Small, 2016, 12(17): 2354-2364. |
21 | WANG Q F , ZOU R Q , XIA W , et al . Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries[J]. Small, 2015, 11(21): 2511-2517. |
22 | YANG D H , ZHOU X L , ZHONG M , et al . A robust hybrid of SnO2 nanoparticles sheathed by N-doped carbon derived from ZIF-8 as anodes for Li ion batteries[J]. Chemnanomat, 2017, 3: doi: 10.1002/cnma. 201600371. |
23 | ZHANG L , WU H B , MADHAVI S , et al . Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American Chemical Society, 2012, 134(42): 17388-17391. |
24 | YANG X , TANG Y B , HUANG X , et al . Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks[J]. Journal of Power Sources, 2015, 284: 109-114. |
25 | LUO J S , XIA X H , LUO Y S , et al . Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage[J]. Advanced Energy Materials, 2013, 3(6): 737-743. |
26 | LI Z Q , LI B , YIN L W , et al . Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014, 6: doi: 10.1021/am500417j. |
27 | ABBAS S M , HUSSAIN S T , ALI S, et al . Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2013, 202: 43-50. |
28 | ZHENG F C , ZHU D Q , CHEN Q W , et al . MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries[J]. Dalton Transactions, 2015, 44(38): doi: 10.1039/c5dt02271a. |
29 | HUANG G , ZHANG L L , ZHANG F F , et al . Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries[J]. Nanoscale, 2014, 6(10): 5509-5515. |
30 | HAMEED A S , REDDY M V , CHOWDARI B V , et al . Carbon coated Li3V2(PO4)3 from the single-source precursor, Li2(VO)2(HPO4)2(C2O4)·6H2O as cathode and anode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 128: 184-191. |
31 | ZHANG Z Y , YOSHIKAWA H , AWAGA K , et al . Monitoring the solid-state electrochemistry of Cu(2, 7-AQDC) (AQDC=anthraquinone dicarboxylate) in a lithium battery: Coexistence of metal and ligand redox activities in a metal-organic framework[J]. Journal of the American Chemical Society, 2014, 136(46): 16112-16115. |
32 | SHIN J , KIM M , CIRERA J , et al . MIL-101(Fe) as a lithium-ion battery electrode material: A relaxation and intercalation mechanism during lithium insertion[J]. Journal of Materials Chemistry, 2015, 3(8): 4738-4744. |
33 | SHEN L , WANG Z X , CHEN L Q , et al . Prussian blues as a cathode material for lithium ion batteries[J]. Chemistry: A European Journal, 2014, 20(39): 12559-12562. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[5] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[6] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[7] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[8] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[9] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[10] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[11] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[12] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[13] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[14] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[15] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||