Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 5-17.doi: 10.19799/j.cnki.2095-4239.2019.0281
Previous Articles Next Articles
TIAN Mengyu(), JI Hongxiang, TIAN Feng, QI Wenbin, JIN Zhou, ZHANG Hua, YAN Yong, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie()
Received:
2019-12-18
Revised:
2019-12-20
Online:
2020-01-05
Published:
2020-01-10
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.com.cn;xjhuang@iphy.ac.cn
CLC Number:
TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, JIN Zhou, ZHANG Hua, YAN Yong, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2019 to Nov. 30, 2019)[J]. Energy Storage Science and Technology, 2020, 9(1): 5-17.
1 | KONG D , HU J , CHEN Z , et al . Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery[J]. Advanced Energy Materials, 2019: doi: 10.1002/aenm.201901756. |
2 | HASHIGAMI S , KATO Y , YOSHIMI K , et al . Effect of lithium silicate addition on the microstructure and crack formation of LiNi0.8Co0.1Mn0.1O2 cathode particles[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39910-39920. |
3 | REN D , PADGETT E , YANG Y , et al . Ultrahigh rate performance of a robust lithium nickel manganese cobalt oxide cathode with preferentially orientated Li-diffusing channels[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41178-41187. |
4 | HRYU H , JPARK K , YOON D R , et al . Li Ni0.9Co0.09W0.01 O-2: A new type of layered oxide cathode with high cycling stability[J]. Advanced Energy Materials, 2019: doi: 10.1002/aenm.201902698. |
5 | HASHIGAMI S , YOSHIMI K , KATO Y , et al . Hard X-ray photoelectron spectroscopy analysis of surface chemistry of spray pyrolyzed LiNi0.5Co0.2Mn0.3O2 positive electrode coated with lithium boron oxide[J]. Electrochemistry, 2019, 87(6): 357-364. |
6 | CHEN C , XU M , ZHANG K , et al . Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application[J]. Electrochimica Acta, 2019, 300: 437-444. |
7 | CHENG X , ZHENG J , LU J , et al . Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62: 30-37. |
8 | YOON M , DONG Y , YOO Y, et al . Unveiling nickel chemistry in stabilizing high-voltage cobalt-rich cathodes for lithium-ion batteries[J]. Advanced Functional Materials, 2019: doi: 10.1002/adfm.201907903. |
9 | FENG F , HU X , HU L , et al . Propagation mechanisms and diagnosis of parameter inconsistency within Li-ion battery packs[J]. Renewable & Sustainable Energy Reviews, 2019, 112: 102-113. |
10 | DONG T , ZHANG H , MA Y , et al . A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes[J]. Journal of Materials Chemistry A, 2019, 7(42): 24594-24601. |
11 | MADSEN K E , WADE K A , HAASCH R T , et al . Origin of enhanced cyclability in covalently modified LiMn1.5Ni0.5O4 cathodes[J]. ACS Applied Materials & Interfaces, 2019: doi: 10.1021/acsami.9b12912. |
12 | SHI P , CHENG X B , LI T , et al . Electrochemical diagram of an ultrathin lithium metal anode in pouch cells[J]. Advanced Materials, 2019, 31(37): doi: 10.1002/adma.201902785. |
13 | SONG B , DHIMAN I , CAROTHERS J C , et al . Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron imaging[J]. ACS Energy Letters, 2019, 4(10): 2402-2408. |
14 | CHEN Y , ELANGOVAN A , ZENG D , et al . Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Advanced Functional Materials, 2019: doi: 10.1002/adfm.201906444. |
15 | CHOI S H , LEE S J, YOO D J, et al . Marginal magnesium doping for high-performance lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(41):doi: 10.1002/aenm.201902278. |
16 | DONG J , DAI H , WANG C , et al . Uniform lithium deposition driven by vertical magnetic field for stable lithium anodes[J]. Solid State Ionics, 2019, 341: doi: 10.1016/j.ssi.2019.115033. |
17 | BALAISH M , GAO X , BRUCE P G , et al . Enhanced Li-O-2 battery performance in a binary "liquid teflon" and dual redox mediators[J]. Advanced Materials Technologies, 2019, 4(4): doi: https://doi.org/10.1002/admt.201800645. |
18 | AHN S, KADOYA T , NARA H , et al . Tin addition for mechanical and electronic improvement of electrodeposited Si-O-C composite anode for lithium-ion battery[J]. Journal of Power Sources, 2019, 437: doi: https://doi.org/10.1016/j.jpowsour.2019.226858. |
19 | ZHU L , CHEN Y , WU C , et al . Double-carbon protected silicon anode for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 812: doi: https://doi.org/10.1016/j.jallcom.2019.151848. |
20 | AI Q , LI D , GUO J , et al . Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries[J]. Advanced Materials Interfaces, 2019: doi: 10.1002/admi.201901187. |
21 | LIN G , WANG H , ZHANG L , et al . Graphene nanowalls conformally coated with amorphous/nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries[J]. Journal of Power Sources, 2019, 437: doi: 10.1016/j.jpowsour.2019.226909. |
22 | CHEN H , HE S , HOU X , et al . Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode[J]. Electrochimica Acta, 2019, 312: 242-250. |
23 | MUKRA T , HOROWITZ Y , SHEKHTMAN I , et al . Disiloxane with nitrile end groups as co-solvent for electrolytes in lithium-sulfur batteries–A feasible approach to replace LiNO3 [J]. Electrochimica Acta, 2019, 307: 76-82. |
24 | BHATI M , SENFTLE T P . Identifying adhesion properties at Si/polymer interfaces with ReaxFF[J]. Journal of Physical Chemistry C, 2019, 123(44): 27036-27047. |
25 | LIU T , WANG L , HUANG T , et al . Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electroca-talysts for Li-O-2 batteries[J]. Nano Research, 2019, 12(3): 517-523. |
26 | HAMIDAH N L , WANG F M , NUGROHO G . The understanding of solid electrolyte interface (SEI) formation and mechanism as the effect of flouro-o-phenylenedimaleimaide (F-MI) additive on lithium-ion battery[J]. Surface and Interface Analysis, 2019, 51(3): 345-352. |
27 | ZUO D C , SONG S C , AN C S , et al . Synthesis of sandwich-like structured Sn/SnO x @MXene composite through in-situ growth for highly reversible lithium storage[J]. Nano Energy, 2019, 62: 401-409. |
28 | PAREKH M H , SEDIAKO A D , NASERI A , et al . In situ mechanistic elucidation of superior Si-C-graphite Li-ion battery anode formation with thermal safety aspects[J]. Advanced Energy Materials, 2019: doi: 10.1002/aenm.201902799. |
29 | JIN J , WANG Z , WANG R , et al . Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J]. Advanced Functional Materials, 2019, 29(12): doi: 10.1002/adfm.201807441. |
30 | XU H , LI S , ZHANG C , et al . Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(10): 2991-3000. |
31 | SUN D , LUO B , WANG H , et al . Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103937. |
32 | AHN S, NAKAMURA Y , NARA H , et al . Application of Sn-Ni alloy as an anode for lithium-ion capacitors with improved volumetric energy and power density[J]. Journal of the Electrochemical Society, 2019, 166(15): A3615-A3619. |
33 | KIM J , PARK K , WOO H, et al . Selective removal of nanopores by triphenylphosphine treatment on the natural graphite anode[J]. Electrochimica Acta, 2019, 326: doi: https://doi.org/10.1016/j.electacta.2019.134993. |
34 | JESSL S , COPIC D , ENGELKE S , et al . Hydrothermal coating of patterned carbon nanotube forest for structured lithium-ion battery electrodes[J]. Small, 2019, 15(45): doi: 10.1002/smll.201901201. |
35 | ZHANG X , JU Z , HOUSEL L M , et al . Promoting transport kinetics in Li-ion battery with aligned porous electrode architectures[J]. Nano Letters, 2019, 19(11): 8255-8261. |
36 | CHOUDHURY S , STALIN S , VU D, et al . Solid-state polymer electrolytes for high-performance lithium metal batteries[J]. Nature Communications, 2019, 10: doi: https://doi.org/10.1038/s41467-019-12423-y. |
37 | LU F , PANG Y , ZHU M , et al . A high-performance Li-B-H electrolyte for all-solid-state Li batteries[J]. Advanced Functional Materials, 2019, 29(15): doi: https://doi.org/10.1002/adfm.201809219. |
38 | DEINER L J , JENKINS T , HOWELL T , et al . Aerosol jet printed polymer composite electrolytes for solid-state Li-ion batteries[J]. Advanced Engineering Materials, 2019: doi: 10.1002/adem.201900952. |
39 | CHEN H , MA X , SHEN P K . In-situ encapsulating FeS/Fe3C nanoparticles into nitrogen-sulfur dual-doped graphene networks for high-rate and ultra-stable lithium storage[J]. Journal of Alloys and Compounds, 2019, 779: 193-201. |
40 | GAI J , MA F , ZHANG Z , et al . Flexible organic-inorganic composite solid electrolyte with asymmetric structure for room temperature solid -state Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15896-15903. |
41 | KHAN K , TU Z , ZHAO Q , et al . Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability[J]. Chemistry of Materials, 2019, 31(20): 8466-8472. |
42 | XIE H , BAO Y , CHENG J , et al . Flexible garnet solid-state electrolyte membranes enabled by tile-and-grout design[J]. ACS Energy Letters, 2019, 4(11): 2668-2674. |
43 | CHOI D , KANG J , HAN B . Unexpectedly high energy density of a Li-ion battery by oxygen redox in LiNiO2 cathode: First-principles study[J]. Electrochimica Acta, 2019, 294: 166-172. |
44 | JIANG Z , WANG S , CHEN X , et al . Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries[J]. Advanced Materials, 2019: doi: 10.1002/adma.201906221. |
45 | SHANGGUAN X , XU G , CUI Z , et al . Additive-assisted novel dualsalt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15(16): doi: 10.1002/smll.201900269. |
46 | SIMON F J , HANAUER M , HENSS A , et al . Properties of the interphase formed between argyrodite-type Li6PS5Cl and polymer-based PEO10:LiTFSI[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42186-42196. |
47 | ABDELHAMID M E , RUETHER T , VEDER J P , et al . Electrochemically controlled deposition of ultrathin polymer electrolyte on complex microbattery electrode architectures[J]. Journal of the Electrochemical Society, 2019, 166(3): A5462-A5469. |
48 | YU Z , MACKANIC D G , MICHAELS W , et al . A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes[J]. Joule, 2019, 3(11): 2761-2776. |
49 | DING C , FU X , LI H , et al . An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(43): doi: 10.1002/adfm.201904547. |
50 | SHAO D , WANG X , LI X , et al . Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2019, 23(10): 2785-2792. |
51 | KIM N , MYUNG Y , KANG H , et al . Effects of methyl acetate as a co-solvent in carbonate-based electrolytes for improved lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33844-33849. |
52 | HEKMATFAR M , HASA I , EGHBAL R , et al . Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes[J]. Advanced Materials Interfaces, 2019: doi: 10.1002/admi.201901500. |
53 | AGOSTINI M , SADD M , XIONG S , et al . Designing a safe electrolyte enabling long-Life Li/S batteries[J]. Chemsuschem, 2019, 12(18): 4176-4184. |
54 | FAN X , JI X , CHEN L , et al . All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
55 | HOUSEL L M , LI W , QUILTY C D , et al . Insights into reactivity of silicon negative electrodes: Analysis using isothermal microcalorimetry[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37567-37577. |
56 | CHEN L , FAN X , HU E , et al . Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery[J]. Chem, 2019, 5(4): 896-912. |
57 | CAO J , TORNHEIM A , GLOSSMANN T , et al . Understanding the impact of a nonafluorinated ether-based electrolyte on Li-S battery[J]. Journal of the Electrochemical Society, 2019, 166(15): A3653-A3659. |
58 | GUO R , CHE Y , LAN G , et al . Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38285-38293. |
59 | ANDO H , KOJIMA T , TAKEICHI N , et al . Mixture of monoglyme-based solvent and lithium bis(trifluoromethanesulfonyl)amide as electrolyte for lithium ion battery using silicon electrode[J]. Materials Chemistry and Physics, 2019, 225: 105-110. |
60 | ZHENG X , HUANG T , FANG G , et al . Di(methylsulfonyl) ethane: New electrolyte additive for enhancing LiCoO2/electrolyte interface stability under high voltage[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 36244-36251. |
61 | LI X , LIANG J , CHEN N , et al . Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie-International Edition, 2019: doi: 10.1002/anie.201909805. |
62 | ZHA W , XU Y , CHEN F , et al . Cathode/electrolyte interface engineering via wet coating and hot pressing for all-solid-state lithium battery[J]. Solid State Ionics, 2019, 330: 54-59. |
63 | HUANG Q , TURCHENIUK K , REN X , et al . Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites[J]. Nature Materials, 2019, 18(12): doi: 10.1038/s41563-019-0472-7. |
64 | KLINSMANN M , HILDEBRAND F E , GANSER M , et al . Dendritic cracking in solid electrolytes driven by lithium insertion[J]. Journal of Power Sources, 2019, 442: doi: 10.1016/j.jpowsour.2019.227226. |
65 | WANG L , HU S , SU J , et al . Self-Sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42715-42721. |
66 | BONNICK P , NIITANI K , NOSE M , et al . A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(42): 24173-24179. |
67 | CHAN D , XIAO Z , GUO Z , et al . Titanium silicalite as a radical-redox mediator for high-energy-density lithium-sulfur batteries[J]. Nanoscale, 2019, 11(36): 16968-16977. |
68 | FAN S , HUANG S , PAM M E, et al . Design multifunctional catalytic interface: Toward regulation of polysulfide and Li2S redox conversion in Li-S batteries[J]. Small, 2019: doi: 10.1002/smll.201906132: e1906132-e1906132. |
69 | KIM S H , KIM J H , CHO S J, et al . All-solid-state printed bipolar Li-S batteries[J]. Advanced Energy Materials, 2019, 9(40): doi: https://doi.org/10.1002/aenm.201901841. |
70 | ZHANG T , QU H , SUN K , et al . Facile fabrication of Co9S8 embedded in a boron and nitrogen co-doped carbon matrix as sodium-ion battery anode[J]. Chemelectrochem, 2019, 6(6): 1776-1783. |
71 | ZHU Y R , YI T F , LI X Y , et al . Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating[J]. Materials Letters, 2019, 239: 56-58. |
72 | JEZOWSKI P , CROSNIER O , DEUNF E , et al . Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt[J]. Nature Materials, 2018, 17(2): 167-173. |
73 | FAN X , CHEN F , ZHANG Y , et al . Constructing LiPAA interface layer: A new strategy to suppress polysulfides migration and facilite Li+ transport for high-performance flexible Li-S battery[J]. Nanotechnology, 2019: doi: 10.1088/1361-6528/ab5601. |
74 | HAO Z , CHEN J , YUAN L , et al . Advanced Li2S/Si full battery enabled by TiN polysulfide immobilizer[J]. Small, 2019: doi: 10.1002/smll.201902377. |
75 | RANA H H , JANA M , YEON J S , et al . Interfacially polymerized polyamide interlayer onto ozonated carbon nanotube networks for improved stability of sulfur cathodes[J]. ChemSusChem, 2019: doi: 10.1002/cssc.201902236. |
76 | DONG L , LIU J , CHEN D , et al . Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries[J]. ACS Nano, 2019: doi: 10.1021/acsnano.9b06934. |
77 | ZHOU X , LIU Y , DU C , et al . Layer-by-layer engineered silicon-based sandwich nanomat as flexible anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019: doi: 10.1021/acsami.9b13353. |
78 | POOZHIKUNNATH A , FAVATA J , AHMADI B , et al . Correlative microscopy-based approach for analyzing microscopic impurities in carbon black for lithium-ion battery applications[J]. Journal of the Electrochemical Society, 2019, 166(14): A3335-A3341. |
79 | CHOI S , YUN B N , JUNG W D , et al . Tomographical analysis of electrochemical lithiation and delithiation of LiNi0.6Co0.2Mn0.2O2 cathodes in all-solid-state batteries[J]. Scripta Materialia, 2019, 165: 10-14. |
80 | SCHREINER D , OGUNTKE M , GUENTHER T , et al . Modelling of the calendering process of NMC-622 cathodes in battery production analyzing machine/material-process-structure correlations[J]. Energy Technology, 2019, 7(11): doi: https://doi.org/10.1002/ente.201900840. |
81 | SIMOES F R F , ABOU-HAMAD E , SMAJIC J , et al . Chemical and structural analysis of carbon materials subjected to alkaline oxidation[J]. ACS Omega, 2019, 4(20): 18725-18733. |
82 | ZHU Y , PHAM H , PARK J . A new aspect of the Li diffusion enhancement mechanism of ultrathin coating layer on electrode materials[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38719-38726. |
83 | MAO C , RUTHER R E , GENG L , et al . Evaluation of gas formation and consumption driven by crossover effect in high voltage lithium-ion batteries with Ni-rich NMC cathodes[J]. ACS Applied Materials & Interfaces, 2019: doi: 10.1021/acsami.9b15916. |
84 | RANGARAJAN S P , BARSUKOV Y , MUKHERJEE P P . In operando signature and quantification of lithium plating[J]. Journal of Materials Chemistry A, 2019, 7(36): 20683-20695. |
85 | HARKS P-P R M L , VERHALLEN T W , GEORGE C , et al . Spatiotemporal quantification of lithium both in electrode and in electrolyte with atomic precision via operando neutron absorption[J]. Journal of the American Chemical Society, 2019, 141(36): 14280-14287. |
86 | IVANOV S , MAI S, HIMMERLICH M , et al . Microgravimetric and spectroscopic analysis of solid-electrolyte interphase formation in presence of additives[J]. Chemphyschem, 2019, 20(5): 655-664. |
87 | LU D , XU G , HU Z , et al . Deciphering the interface of a high-voltage (5 V-class) Li-ion battery containing additive-assisted sulfolane-based electrolyte[J]. Small Methods, 2019, 3(10): doi: 10.1002/smtd.201900546. |
88 | XU Y , DING D , YANG X , et al . Effect of Si addition on mechanical and electrochemical properties of Al-Fe-Cu-La alloy for current collector of lithium battery[J]. Metals, 2019, 9(10): doi: https://doi.org/10.3390/met9101072. |
89 |
KIM K , SIEGEL D J . Predicting wettability and the electrochemical window of lithium-metal/solid electrolyte interfaces[J]. ACS Applied Materials & Interfaces, 2019, doi: 10.1021/acsami.9b13311 .
doi: 10.1021/acsami.9b13311 |
90 | WANG S , CHEN Z , YANG B , et al . Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-Ion batteries[J]. Journal of Colloid and Interface Science, 2019, 555: 431-437. |
91 | CHOOBAR B G , MODARRESS H , HALLADJ R , et al . Multiscale investigation on electrolyte systems of (solvent plus additive) + LiPF6 for application in lithium-ion batteries[J]. Journal of Physical Chemistry C, 2019, 123(36): 21913-21930. |
92 | DE VASCONCELOS L S , SHARMA N , XU R , et al . In-situ nanoindentation measurement of local mechanical behavior of a Li-ion battery cathode in liquid electrolyte[J]. Experimental Mechanics, 2019, 59(3): 337-347. |
93 | LAMORGESE A , MAURI R , TELLIUI B . Electrochemical-thermal P2D aging model of a LiCoO2/graphite cell: Capacity fade simulations[J]. Journal of Energy Storage, 2018, 20: 289-297. |
94 |
QUATTROCCHI E , WAN T H , CURCIO A , et al . A general model for the impedance of batteries and supercapacitors: The non-linear distribution of diffusion times[J]. Electrochimica Acta, 2019, doi: https://doi.org/10.1016/j.electacta.2019.134853 .
doi: 10.1016/j.electacta.2019.134853 |
95 | CHEN B , XU C , ZHOU J . Insights into grain boundary in lithium-rich anti-perovskite as solid electrolytes[J]. Journal of the Electrochemical Society, 2018, 165(16): A3946-A3951. |
96 |
SUN N , LIU Q , CAO Y , et al . Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angewandte Chemie-International Edition, 2019, doi: 10.1002/anie.201910993 .
doi: 10.1002/anie.201910993 |
97 |
DIXIT M B , ZAMAN W , BOOTWALA Y , et al . Scalable manufacturing of hybrid solid electrolytes with interface control[J]. ACS Applied Materials & Interfaces, 2019, doi: 10.1021/acsami.9b15463 .
doi: 10.1021/acsami.9b15463 |
98 |
BEYER S , KOBSCH O , POSPIECH D , et al . Influence of surface characteristics on the penetration rate of electrolytes into model cells for lithium ion batteries[J]. Journal of Adhesion Science and Technology, 2019, doi: 10.1080/01694243.2019.1686831 .
doi: 10.1080/01694243.2019.1686831 |
99 | GAUTHIER R , HALL D S , TASKOVIC T , et al . A joint DFT and experimental study of an imidazolidinone additive in lithium-ion cells[J]. Journal of the Electrochemical Society, 2019, 166(15): A3707-A3715. |
100 | WANG F M , ALEMU T , YEH N H, et al . Interface interaction behavior of self-terminated oligomer electrode additives for a Ni-rich layer cathode in lithium-ion batteries: Voltage and temperature effects[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39827-39840. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||