Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 707-713.doi: 10.19799/j.cnki.2095-4239.2020.0058
Previous Articles Next Articles
YANG Hong(), LEMMON John, MIAO Ping, LIU Qinghua()
Received:
2020-01-20
Revised:
2020-02-28
Online:
2020-05-05
Published:
2020-05-11
Contact:
Qinghua LIU
E-mail:hong.yang.cq@chnenergy.com.cn;qinghua.liu.n@chnenergy.com.cn
CLC Number:
YANG Hong, LEMMON John, MIAO Ping, LIU Qinghua. The effect of carbon cloth electrode material on the performance of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2020, 9(3): 707-713.
1 | 李建林, 惠东, 靳文涛 . 大规模储能技术[M]. 北京: 机械工业出版社, 2018. |
LI Jianlin , HUI Dong , JIN Wentao . Large scale energy storage technology[M]. Beijing: China Machine Press, 2018. | |
2 | 谢聪鑫, 郑琼, 李先锋, 等 . 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057. |
XIE Congxin , ZHENG Qiong , LI Xianfeng , et al . Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057. | |
3 | ALOTTO P , GUARNIERI M , MORO F . Redox flow batteries for the storage of renewable energy: A review[J]. Renewable and Sustainable Energy Reviews, 2014(29): 325-335. |
4 | KIM K J , PARK M S , KIM Y J , et al . A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2015(33): 16913-16933. |
5 | LOURENSSEN K , WILLIAMS J , AHMADPOUR F , et al . Vanadium redox flow batteries: A comprehensive review[J]. Journal of Energy Storage, 2019(25): 100844-100861. |
6 | CRISTINA F , MARCEL S , JAVIER R G , et al . Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries[J]. Applied Energy, 2013(109): 344-351. |
7 | COUPER A M , PLETCHER D , WALSH F C . Electrode materials for electrosynthesis[J]. Chemical Reviews, 1990(90): 837-865. |
8 | 陈金庆, 汪钱, 王保国 . 全钒液流电池关键材料研究进展[J]. 现代化工, 2006, 26(9): 21-24. |
CHEN Jinqing , WANG Qian , WANG Baoguo . Research progress in key materials for all vanadium redox flow battery[J]. Modern Chemical Industry, 2006, 26(9): 21-24. | |
9 | PARASURAMAN A , LIM T M, MENICTAS C , et al . Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta, 2013(101): 27-40. |
10 | 钱鹏, 张华民, 陈剑, 等 . 全钒液流电池用电极及双极板研究进展[J]. 能源工程, 2007(1): 7-11. |
QIAN Peng , ZHANG Huamin , CHEN Jian , et al . Progress on electrode and bipolar plate materials for vanadium redox flow batteries[J]. Energy Engineering, 2007(1): 7-11. | |
11 | KIM K J , KIM Y J , KIM J H , et al . The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries[J]. Materials Chemistry and Physics, 2011(131): 547-553. |
12 | KIM K J , PARK M S , KIM J H , et al . Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries[J]. Chemical Communications, 2012(48): 5455-5457. |
13 | MELANIE P , RICHARD L M , ROYCE E . Laser activation of carbon electrodes. Relationship between laser-induced surface effects and electron transfer activation[J]. Analytic Chemistry, 1988(60): 1725-1730. |
14 | KIM Y , CHOI Y Y , YUN N , et al . Activity gradient carbon felt electrodes for vanadium redox flow batteries[J]. Journal of Power Sources, 2018(408): 128-135. |
15 | 刘然, 廖孝艳, 杨春, 等 . 全钒液流电池石墨毡电极酸、热处理方法的对比[J]. 化工进展, 2011, 30(S1): 762-766. |
LIU Ran , LIAO Xiaoyan , YANG Chun , et al . Different treatments of graphite electrode materials for vanadium redox flow battery[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 762-766. | |
16 | MELANITIS N , TETLOW P L , GALIOTIS C . Characterization of PAN-based carbon fibres with laser Raman spectroscopy[J]. Journal of Materials Science, 1996(31): 851-860. |
17 | NIKIEL L , JAGODZINSKI P W . Raman spectroscopic characterization of graphites: A re-evaluation of spectra structure correlation[J]. Carbon, 1993, 31(8): 1313-1317. |
18 | 张新, 马雷, 李常清, 等 . PAN基碳纤维微结构特征的研究[J]. 北京化工大学学报(自然科学版), 2008, 35(5): 57-60. |
ZHANG Xin , MA Lei , LI Changqing , et al . Study of the microstructure of PAN-based carbon fibers[J]. Journal of Beijing University of Chemical Technology, 2008, 35(5): 57-60. | |
19 | YUEZ R , JIANG W , WANG L , et al . Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999(37): 1785-1796. |
20 | SUN B , KAZACOS M S . Modification of graphite electrode materials for vanadium redox flow battery application–I. thermal treatment[J]. Electrochimica Acta, 1992(37): 1253-1260. |
[1] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[2] | Kehuan XIE, Chuanchang LI, Jian CHEN, Longhai YU, zhun TAN, Weihai QIN. Simulation model advances in vanadium redox flow battery energy storage and monitoring method for state of charge [J]. Energy Storage Science and Technology, 2021, 10(6): 2363-2372. |
[3] | Rong ZHANG, Shuguang WANG, Xuan SUN, Xiaosong JIANG, Lei HU, Xiaoming YAN, Gaohong HE. Preparation of sulfonated poly(ether ether ketone) amphoteric ion exchange membrane and its application in iron-chromium redox flow battery [J]. Energy Storage Science and Technology, 2021, 10(4): 1305-1310. |
[4] | Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. |
[5] | WANG Qiushi, SUN Miaomiao, LIU Qinghua, YANG Hong CHEN Jingyun, LIU Junqing, LIANG Wenbin. Surface modification of carbon fiber paper for vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 714-719. |
[6] | SHAO Junkang, LI Xin, MO Yanqing, QIU Ya, DONG Xueping, ZHU Haoyu. Analysis of modeling and flow characteristics of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(2): 645-655. |
[7] | XING Xueqi, LIU Qinghua, LEMMON John. Recent progresses in non-aqueous redox flow batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 617-625. |
[8] | CHI Xiaoni, ZHU Mingang, WU Qiuxuan. Research on optimal operation control based on the equivalent model of VRFB system [J]. Energy Storage Science and Technology, 2018, 7(3): 530-538. |
[9] | LIU Jinyu,LI Dan, WANG Lihua, HAN Xutong, HUANG Qinglin. SPEEK/ SGO proton exchange membranes with superior proton selectivity for vanadium redox battery [J]. Energy Storage Science and Technology, 2018, 7(1): 66-. |
[10] | LI Xiangrong1,2, QIN Ye1, LIU Jianguo1, YAN Chuanwei1. Prediction of viscosity for concentrated aqueous VOSO4 solutions for vanadium flow batteries [J]. Energy Storage Science and Technology, 2017, 6(4): 776-781. |
[11] | JIA Chuankun, WANG Qing. The development of high energy density redox flow batteries [J]. Energy Storage Science and Technology, 2015, 4(5): 467-475. |
[12] | CHEN Jizhong, LAI Xiaokang, HUI Dong, LI Bei, WANG Kunyang, LI Youning. Testing and analyzing power-energy response capability of the vanadium redox flow battery [J]. Energy Storage Science and Technology, 2014, 3(5): 486-489. |
[13] | LIAO Sida, SONG Shiqiang, ZHANG Jianbo, WANG Baoguo. Simulation of the effects of electrode parameters on all-vanadium redox flow battery performance [J]. Energy Storage Science and Technology, 2014, 3(4): 395-405. |
[14] | LI Minghua, FAN Yongsheng, LI Bingyang, WANG Baoguo. Theoretical and technological aspects of flow batteries:Shunt current formation and control [J]. Energy Storage Science and Technology, 2014, 3(2): 164-169. |
[15] | LIU Zonghao, ZHANG Huamin, GAO Sujun, MA Xiangkun, LIU Yufeng. The world's largest all-vanadium redox flow battery energy storage system for a wind farm [J]. Energy Storage Science and Technology, 2014, 3(1): 71-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||