[1] PARK M, RYU J, CHO J. Nanostructured electrocatalysts for all-vanadium redox flow batteries[J]. Chemistry-An Asian Journal, 2015, 10(10):2096-2110.
[2] SUM E, SKYLLAS-KAZACOS M. A study of the V(Ⅱ)/V(Ⅲ) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2):179-190.
[3] SUM E, RYCHCIK M, SKYLLAS-KAZACOS M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16(2):85-95.
[4] SHAH A A, WATT-SMITH M J, WALSH F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53(27):8087-8100.
[5] AL-FETLAWI H, SHAH A A, WALSH F C. Non-isothermal modelling of the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55(1):78-89.
[6] TANG A, BAO J, SKYLLAS-KAZACOS M. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery[J]. Journal of Power Sources, 2012, 216:489-501.
[7] TANG A, MCCANN J, BAO J, et al. Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery[J]. Journal of Power Sources, 2013, 242:349-356
[8] XIONG B, ZHAO J, LI J. Modeling of an all-vanadium redox flow battery and optimization of flow rates[C]//Power and Energy Society General Meeting,Vancouver, B C, Canada, 2013.
[9] ULAGANATHAN M, ARAVINDAN V, YAN Q, et al. Recent advancements in all-vanadium redox flow batteries[J]. Advanced Materials Interfaces, 2016, 3(1):1-22.
[10] ONTIVEROS L J, MERCADO P E. Modeling of a vanadium redox flow battery for power system dynamic studies[J]. International Journal of Hydrogen Energy, 2014, 39(16):8720-8727.
[11] 李国杰, 唐志伟, 聂宏展, 等. 钒液流储能电池建模及其平抑风电波动研究[J]. 电力系统保护与控制, 2010, 38(22):115-119. LI G J, TANG Z W, NIE H Z, et al. Modelling and controlling of vanadium redox flow battery to smooth wind power fluctuation[J]. Power System Protection and Control, 2010, 38(22):115-119.
[12] 李鑫, 莫言青, 邱亚, 等. 全钒液流电池仿真模型综述[J]. 机械设计与制造工程, 2017, 46(11):1-7. LI X, MO Y Q, QIU Y, et al. Review on the vanadium redox flow battery simulation modeling[J]. Machine Design and Manufacturing Engineering, 2017, 46(11):1-7.
[13] 李丽霞, 刘颖明, 刘衍选, 等. 全钒液流电池建模与工作特性分析[J]. 沈阳工程学院学报(自然科学版), 2013, 9(3):256-259. LI L X, LIU Y M, LIU Y X, et al. Modelling and simulation of the vanadium redox flow battery[J]. Journal of Shenyang Institute of Engineering(Natural Science), 2013, 9(3):256-259.
[14] 尹丽, 李欣然, 户龙辉, 等. 考虑离子扩散的全钒液流电池等效电路建模[J]. 电力系统及其自动化学报, 2015, 27(9):36-41. YIN L, LI X R, HU L H, et al. Equivalent circuit modeling of all vanadium redox flow battery considering ion diffusion[J]. Proceedings of the CSU-EPSA, 2015, 27(29):36-41.
[15] ZHU S, SUN W, WANG Q, et al. Review of R & D status of vanadium redox battery[J]. Chemical Industry & Engineering Progress, 2007, 26(2):207-211.
[16] ALOTTO P, GUARNIERI M, MORO F. Redox flow batteries for the storage of renewable energy:A review[J]. Renewable & Sustainable Energy Reviews, 2014, 29(7):325-335.
[17] BAROTE L, MARINESCU C, GEORGESCU M. VRB modeling for storage in stand-alone wind energy systems[C]//Power Tech., 2009 IEEE Bucharest, IEEE, Romania, 2009.
[18] RAMY G. Hybridization of energy storage systems for grid support by Means of bidirectional power electronic converter[D]. Spain:Universidad De Oviedo, 2014. |