Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1402-1409.doi: 10.19799/j.cnki.2095-4239.2020.0080
Previous Articles Next Articles
Xuejiao NIE1(), Jinzhi GUO2, Meiyi WANG1, Zhenyi GU2, Xinxin ZHAO1, Xu YANG1, Haojie LIANG2, Xinglong WU1,2()
Received:
2020-02-23
Revised:
2020-03-04
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xinglong WU
E-mail:niexj320@nenu.edu.cn;xinglong@nenu.edu.cn
CLC Number:
Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409.
Fig.4
Electrochemical properties of LNMO materials for SIBs: (a) rate performance of LNMO materials; (b) charge-discharge curves of LNMO materials at different current densities; (c) the cycle performance of LNMO materials; (d) charge-discharge curves of LNMO material at current density of 100 mA/g for cycles 3, 50 and 100"
1 | PANG W L, ZHANG X H, GUO J Z, et al. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics[J]. Journal of Power Sources, 2017, 356: 80-88. |
2 | RAMASAMY H V, KALIYAPPAN K, THANGAVEL R, et al. Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping[J]. Journal of Physical Chemistry Letters, 2017, 8(20): 5021-5030. |
3 | Springer Nature SharedIt.Recycle spent batteries[J]. Nature Energy, 2019, 4(4): 253-253. |
4 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 7781 (575): 75-86. |
5 | LI H, WANG Z, CHEN L, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607. |
6 |
YANG X, WANG Y Y, HOU B H, et al. Nano-SnO2 decorated carbon cloth as flexible, self-supporting and additive-free anode for sodium/lithium-ion batteries[J]. Acta Metallurgica Sinica (English Letters), 2020, doi: 10.1007/s40195-020-01001-7.
doi: 10.1007/s40195-020-01001-7 |
7 | FAN B, CHEN X, ZHOU T, et al. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management and Research, 2016, 34(5): 474-481. |
8 | CHEN X, CAO L, KANG D, et al. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium[J]. Waste Management, 2018, 80: 198-210. |
9 | LI T, ZHAO C, ZHA W, et al. A clean technique to fabricate the renewable and recyclable metal phosphate anode of the high-capacity lithium-ion battery[J]. Journal of Electroanalytical Chemistry, 2019, 855: doi: 10.1016/j.jelechem.2019.113625. |
10 | NATARAJAN S, ARAVINDAN V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials, 2018, 8(33): doi: 10.1002/aenm.201802303. |
11 | HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. |
12 | CHEN X, CHEN Y, ZHOU T, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38: 349-356. |
13 | MENG Q, ZHANG Y, DONG P. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 180: 64-70. |
14 | YAO L, YAO H, XI G, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using d,l-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954. |
15 | MICHAUD X, SHI K, ZHITOMIRSKY I. Electrophoretic deposition of LiFePO4 for Li-ion batteries[J]. Materials Letters, 2019, 241: 10-13. |
16 | CHEN B, BEN L, YU H, et al. Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+-modified LiMn2O4 cathode material[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 550-559. |
17 | KITTA M, AKITA T, KOHYAMA M. Transmission electron microscopy investigation of the LiMn2O4/NaxMnO2 interface as a model study of a Na-ion battery electrode[J]. AIP Advances, 2016, 6(11): doi: 10.1063/1.4968605. |
18 | NIE X J, XI X T, YANG Y, et al. Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134626. |
19 | POTAPENKO A V, KIRILLOV S A. Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite[J]. Electrochimica Acta, 2017, 258: 9-16. |
20 |
YANG Y, GUO J Z, GU Z Y, et al. Effective recycling of the whole cathode in spent lithium ion batteries: From the widely used oxides to high-energy/stable phosphates[J]. ACS Sustainable Chemistry & Engineering, 2019, doi: 10.1021/acssuschemeng.9b00526.
doi: 10.1021/acssuschemeng.9b00526 |
21 | LIANG H J, HOU B H, LI W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science, 2019, 12(12): 3575-3584. |
22 | SUN Y, GUO S, ZHOU H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840. |
23 | ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074. |
24 |
LIU Q, HU Z, CHEN M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, doi: 10.1002/smll.201805381.
doi: 10.1002/smll.201805381 |
25 |
GU Z Y, GUO J Z, SUN Z H, et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries[J]. Science Bulletin, 2020, doi: 10.1016/j.scib.2020.01.018.
doi: 10.1016/j.scib.2020.01.018 |
26 | YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(2): doi: 10.1002/aenm.201701785. |
27 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
28 | 郭晋芝, 万放, 吴兴隆, 等. 钠离子电池工作原理及关键电极材料研究进展[J]. 分子科学学报, 2016, 32(150): 265-279. |
GUO J Z, WAN F, WU X L, et al. Sodium-ion batteries: Work mechanism and the research progress of key electrode materials[J]. International Journal of Molecular Sciences, 2016, 32(150): 265-279. | |
29 | GUO J Z, YANG Y, LIU D S, et al. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: Superior energy storage performance and working mechanism[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702504. |
30 | ZHANG X H, PANG W L, WAN F, et al. P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: Enhanced properties and mechanisam via graphene connection[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20650-20659. |
31 | GUO S, LI Q, LIU P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nature Communications, 2017, 8(1): 135-143. |
32 | GONZALO E, ORTIZ-VITORIANO N, DREWETT N E, et al. P2 manganese rich sodium layered oxides: Rational stoichiometries for enhanced performance[J]. Journal of Power Sources, 2018, 401:117-125. |
33 | DI LECCE D, CAMPANELLA D, HASSOUN J. Insight on the enhanced reversibility of a multimetal layered oxide for sodium-ion battery[J]. The Journal of Physical Chemistry C, 2018, 122(42): 23925-23933. |
34 | DENG J, LUO W B, LU X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J]. Advanced Energy Materials, 2018, 8(5): doi: 10.1002/aenm.201701610. |
35 | 穆林沁, 戚兴国, 胡勇胜, 等. 新型O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 钠离子电池正极材料研究[J]. 储能科学与技术, 2016, 5(3): 324-328. |
MU L Q, QI X G, HU Y S, et al. Electrochemical properties of O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 324-328. | |
36 | KHAN M A, HAN D, LEE G, et al. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries[J]. Journal of Alloys and Compounds, 2019, 771: 987-993. |
37 | HASHEM A M, ABDEL-GHANY A E, ABUZEID H M, et al. EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries[J]. Journal of Alloys and Compounds, 2018, 737: 758-766. |
38 | LI J Y, LV H Y, ZHANG X H, et al. P2-type Na0.53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries[J]. Chemical Engineering Journal, 2017, 316: 499-505. |
39 | PANG W L, GUO J Z, ZHANG X H, et al. P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics[J]. Journal of Alloys and Compounds, 2019, 790: 1092-1100. |
40 | YUE J L, ZHOU Y N, YU X Q, et al. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 23261-23267. |
41 | YABUUCHI N, YANO M, KUZE S, et al. Electrochemical behavior and structural change of spinel-type Li[LixMn2-x]O4 (x=0 and 0.2) in sodium cells[J]. Electrochimica Acta, 2012, 82: 296-301. |
[1] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[2] | Guangling WEI, Ying JIANG, Jiahui ZHOU, Ziheng WANG, Yongxin HUANG, Man XIE, Feng WU. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326. |
[3] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[4] | ZHANG Huimin1,2,3, MING Hai 1,3, ZHANG Wenfeng1,3, WEN Yuehua1,3, YANG Yusheng1,3,MING Jun4. Non-aqueous sodium-ion batteries based on the anode of non-metallic sodium [J]. Energy Storage Science and Technology, 2017, 6(6): 1159-. |
[5] | QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang. Research progress of carbon-based sodium-storage anode materials [J]. Energy Storage Science and Technology, 2016, 5(3): 258-267. |
[6] | LIU Li1,2, WANG Xianyou1, CAO Guozhong2. Titanium-based materials as anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 292-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||