Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1940-1947.doi: 10.19799/j.cnki.2095-4239.2020.0172
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Taihua WANG1(), Shujie ZHANG1(), Jin'gan CHEN2
Received:
2020-05-11
Revised:
2020-06-17
Online:
2020-11-05
Published:
2020-10-28
CLC Number:
Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm[J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947.
Table 3
Charging capacity decline comparison"
测试工况 | CC-CV | 优化后 | 衰退速率减少 |
---|---|---|---|
0℃_20cyc_4.2V | 0.5402 | 0.308 | 42.98% |
0℃_40cyc_4.2V | 0.6961 | 0.4339 | 37.66% |
-5℃_15cyc_4.2V | 0.7335 | 0.6862 | 6.44% |
-5℃_30cyc_4.2V | 0.8344 | 0.8288 | 0.67% |
-10℃_10cyc_4.1V | 1.4762 | 0.9924 | 24.67% |
-10℃_20cyc_4.1V | 1.9604 | 1.1703 | 40.30% |
-15℃_8cyc_4.2V | 3.0896 | 1.5769 | 48.96% |
-20℃_6cyc_4.2V | 3.6069 | 2.0462 | 43.27% |
Table 4
Charging time comparison"
测试工况 | CC-CV | 优化后 | 充电时间减小 |
---|---|---|---|
0℃_20cyc_4.2 V | 3.03 h | 2.769 h | 8.61% |
0℃_40cyc_4.2 V | 2.97 h | 2.642 h | 11.04% |
-5℃_15cyc_4.2 V | 2.88 h | 2.63 h | 8.68% |
-5℃_30cyc_4.2 V | 3.15 h | 2.797 h | 11.2% |
-10℃_10cyc_4.1 V | 3.18 h | 3.167 h | 0.41% |
-10℃_20cyc_4.1 V | 3.32 h | 3.25 h | 2.11% |
-15℃_8cyc_4.2 V | 3.58 h | 3.457 h | 3.44% |
-20℃_6cyc_4.2 V | 3.95 h | 3.624 h | 8.25% |
1 | 中国汽车工业协会.荷兰研究电动车充电数据低温充电时间更长[EB/OL].. |
China Association of Automobile Manufacturers. Dutch research on ev charging data longer charging time at low temperature[EB/OL]. . | |
2 | 中国汽车工业协会.特斯拉挪威栽跟头:电动车现低温电池故障[EB/OL].. |
China Association of Automobile Manufacturers. Tesla stumbles in Norway: Electric cars have low temperature battery failure[EB/OL]. http: //. | |
3 | 贺刚, 杨晨戈, 邓柯军, 等. 纯电动汽车用锂离子电池低温充电性能研究[C]//2015中国汽车工程学会年会, 上海, 2015. |
HE Gang, YANG Chenge, DENG Kejun, et al. Investigation of charging characteristic in the low temperature for electric vehicles lithium in battery[C]//2015 Proceedings of China Society of Automotive Engineering, 2015 | |
4 | 杨莹莹, 刘耀锋, 魏学哲. 车用锂离子电池低温性能研究[J]. 机电一体化, 2016, 22(6): 30-35, 46. |
YANG Y Y, LIU Y F, WEI X Z. Research on low temperature performance of vehicle lithium ion battery[J]. Mechatronics, 2016, 22(6): 30-35, 46. | |
5 | 谢晓华, 解晶莹, 夏保佳. 锂离子电池低温充放电性能的研究[J]. 化学世界, 2008(10): 581-583. |
XIE X H, XIE J Y, XIA B J. Study on the performance of lithium ion battery charging and discharging at low temperature[J]. Chemical World, 2008 (10): 581-583. | |
6 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery- A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
7 | DOYLE M, FULLER T J N. Modeling of galvanostatic charge and discharge of the lithium/ polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
8 | DOYLE M, NEWMAN J, GOZDZ A S. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 533-543. |
9 | WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011,196(8): 3942-3948. |
10 | ZHANG C, JIANG J, GAO Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. |
11 | HSIEH G, CHEN L, HUANG K. Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller[J]. IEEE Transactions on Industrial Electronics, 2001, 48(3): 585-593. |
12 | 黄健, 严胜刚. 基于区域划分自适应粒子群优化的超短基线定位算法[J]. 控制与决策, 2019, 34(9): 2023-2030. |
HUANG J, YAN S G. An ultra-short baseline location algorithm based on zonal Adaptive particle Swarm optimization[J]. Control and Decision Making, 2019, 34(9): 2023-2030. | |
13 | EBERHART R, KENNEGY J. A new optimizer using particle swarm theory[C]//Proc of the 6th Symposium on Micro Machine & Human Science. Nagoya, 2002: 39-43. |
14 | 耿焕同, 周山胜, 陈哲, 等. 基于分解的预测型动态多目标粒子群优化算法[J]. 控制与决策, 2019, 34(6): 1307-1318. |
GENG H T, ZHOU S S, CHEN Z, et al. Predictive dynamic multi-objective particle swarm optimization algorithm based on decomposition[J]. Control and Decision Making, 2019, 34(6): 1307-1318. |
[1] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[2] | Mengmeng GENG, Maosong FAN, Kai YANG, Guangjin ZHAO, Zhen TAN, Fei GAO, Mingjie ZHANG. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network [J]. Energy Storage Science and Technology, 2022, 11(2): 673-678. |
[3] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
[4] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[5] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[6] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[7] | Yuanjin ZHANG, Huawei WU, Congjin YE. Estimation of the SOC of a battery based on the AUKF-BP algorithm [J]. Energy Storage Science and Technology, 2021, 10(1): 237-241. |
[8] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[9] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[10] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[11] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[12] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[13] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[14] | ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. |
[15] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||