Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 586-597.doi: 10.19799/j.cnki.2095-4239.2020.0335
• Energy Storage System and Engineering • Previous Articles Next Articles
Received:
2020-11-13
Revised:
2020-11-23
Online:
2021-03-05
Published:
2021-03-05
Contact:
Bin XIE,Jia'nan SUN
E-mail:xiebin@csvw.com;sunjianan@csvw.com
CLC Number:
Bin XIE, Jia'nan SUN. Development of high specific energy lithium-sulfur cell module based on mechanical simulations[J]. Energy Storage Science and Technology, 2021, 10(2): 586-597.
Fig. 12
(a) power spectral density curve of random vibration simulation of lithium-sulfur cell module; (b) simulation diagram of random vibration test of lithium-sulfur cell module; (c) power spectral density curve of random vibration test of lithium-sulfur cell module and actual collected curve; (d) photos of lithium-sulfur cell module after random vibration test"
1 | 徐丹, 赵晓军. 锂离子动力电池模组设计浅析[J]. 电源世界, 2017(2): 26-29. |
XU Dan, ZHAO Xiaojun. Simple analysis on design of Li-ion battery module[J]. The World of Power Supply, 2017(2): 26-29. | |
2 | 杨重科, 冯富春, 李彦良, 等. 电池模组模态优化分析[J]. 电源世界, 2017(6): 37-39. |
YANG Zhongke, FENG Fuchun, LI Yanliang, et al. Modal optimization analysis of battery module[J]. The World of Power Supply, 2017(6): 37-39. | |
3 | 王炎, 高青, 王国华, 等. 混流集成式电池组热管理温度均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1347. |
WANG Yan, GAO Qing, WANG Guohua, et al. Simulation of mixed inner air-flow integrated thermal management with temperature uniformity of Li-ion battery[J]. Journal of Jilin University(Engineering and Techonlogy Edition), 2018, 48(5): 1339-1347. | |
4 | 欧阳剑, 张平, 李菁, 等. 电动汽车用智能锂离子电池模组的设计与实现[J]. 机械工程与自动化, 2018(6): 24-26. |
OUYANG Jian, ZHANG Ping, LI Jing, et al. Design and implementation of intelligent lithium-ion battery module for electric vehicle[J]. Mechanical Engineering&Automation, 2018(6): 24-26. | |
5 | 彭佳悦, 刘亚利, 黄杰, 等. 锂离子电池基础科学问题(Ⅺ)—锂空气电池与锂硫电池[J]. 储能科学与技术, 2014, 3(5): 526-543. |
PENG Jiayue, LIU Yali, HUANG Jie, et al. Fundamental scientific aspects of lithium ion batteries(Ⅺ)—Lithium air and lithium sulfur batteries[J]. Energy Storage Science and Technology, 2014, 3(5): 526-543. | |
6 | 张茜, 周浩兵, 刘雨辰, 等. 车用锂离子电池包结构优化设计研究进展[J]. 电源技术, 2019, 43(9): 1559-1562. |
ZHANG Qian, ZHOU Haobing, LIU Yuchen, et al. Research progress of structural optimization design of lithium ion battery pack for vehicle[J]. Chinese Journal of Power Sources, 2019, 43(9): 1559-1562. | |
7 | 郭小强, 郝永辉, 徐瑞芬, 等. 锂离子电池组耐大量级力学的结构设计和优化[J]. 电源技术, 2014, 38(5): 822-825. |
GUO Xiaoqiang, HAO Yonghui, XU Ruifen, et al. Structure design and optimization of lithium-ion battery enduring high-level mechanics[J]. Chinese Journal of Power Sources, 2014, 38(5): 822-825. | |
8 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): doi: 10.1038/natrevmats.2016.13. |
9 | CHEN H, ZHOU G, BOYLE D, et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery[J]. Matter, 2020: doi: 10.1016/j.matt.2020.04.011. |
10 | GOODENOUGH J B, MANTHIRAM A. A perspective on electrical energy storage[J]. MRS Communications, 2014, 4(4):135-142. |
11 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
12 | MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
13 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. |
14 | MANTHIRAM A, CHUNG S H, ZU C X, Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27: 1980-2006. |
15 | YU X W, BI Z H, ZHAO F, et al. Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte[J]. Advanced Energy Materials, 2016, 6: doi: 10.1002/aenm.201601392. |
16 | LI N, WENG Z, WANG Y R, et al. An aqueous dissolved polysulfide cathode for lithium-sulfur batteries[J]. Energy Environment & Science, 2014, 7: doi: 10.1039/C4EE01717J. |
17 | FU K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy Environment & Science, 2017, 10: 1568-1575. |
18 | YU X W, BI Z H, ZHAO F, et al. Hybrid lithium-sulfur batteries with a solid electrolyte membrane and lithium polysulfide catholyte[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16625-16631. |
19 | WANG Y L, SHEN Y B, DU Z L, et al. A lithium-carbon nanotube composite for stable lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5: 23434-23439. |
20 | CHEN H W, SHEN Y B, WANG C H, et al. From nano size effect to in situ wrapping: rational design of cathode structure for high performance lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165: A6034-A6042. |
21 | YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry[J]. Materials and Prospects, 2013, 52: 13186-13200. |
22 | ZHANG J, NING L, HAO Y, et al. Topology optimization for crashworthiness and structural design of a battery electric vehicle[J]. International Journal of Crashworthiness, 2020(8): 1-10. |
23 | CHEN H W, SHEN Y B, WANG H H, et al. From nano size effect to in situ wrapping: Rational design of cathode structure for high performance lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165: A6034-A6042. |
24 | CHEN H W, DONG W L, GE J, et al. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/ sulfur batteries[J]. Scientific Reports, 2013, doi: 10.1038/srep01910. |
25 | HU C J, CHEN H W, SHEN Y B, et al. In situ wrapping of the cathode material in lithium-sulfur batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00656-8. |
[1] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
[2] | Hengfei LU, Xingwu XU, Shengbin LING, Yongkuan SHEN. Development and application of a LFP pouch cell module [J]. Energy Storage Science and Technology, 2022, 11(5): 1468-1474. |
[3] | YE Ge, YUAN Hong, ZHAO Chenzi, ZHU Gaolong, XU Lei, HOU Lipeng, CHENG Xinbing, HE Chuanxin, NAN Haoxiong, LIU Quanbin, HUANG Jiaqi, ZHANG Qiang. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. |
[4] | YAO Lin, ZHOU Ling, LI Shixiong, LI Xiaomin, HE Kai, HE Qingquan, ZAI Jiantao, REN Qizhi, QIAN Xuefeng. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. |
[5] | HU Cejun, YANG Jijin, WANG Hangchao, CHEN Yifan, ZHANG Rongrong, LIU Wen, SUN Xiaoming. Research progress of safe lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. |
[6] | PEI Haijuan, GUO Rui, LI Yong, LIU Wen, CHEN Zhujun, WANG Yong, XIE Jingying. Conductive carbon-coated separator for high sulfur-loading lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(1): 56-. |
[7] | YAN Changqing, CAO Yong. Patent analysis of lithium-sulfur battery technology in China [J]. Energy Storage Science and Technology, 2017, 6(S1): 74-. |
[8] | ZHAO Meng, XU Rui, HUANG Jiaqi, ZHANG Qiang. Flexible cathodes for lithium sulfur battery: A review [J]. Energy Storage Science and Technology, 2017, 6(3): 360-379. |
[9] | SHANG Yongliang1, WANG Chengwen1, LIU Bin1, LIU Jun1,2, KE Xi1,2, LIU Liying1,2, SHI Zhicong1,2. Preparation and properties of manganese dioxide coated carbon nanotubes-sulfur composite cathode material [J]. Energy Storage Science and Technology, 2017, 6(3): 411-417. |
[10] | XU Rui1, ZHAO Meng1, HUANG Jiaqi1,2. Progress in composite separators for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 433-450. |
[11] | TANG Zhen, XIONG Chuanxi. Agar as water soluble binder for lithium-sulfur battery [J]. Energy Storage Science and Technology, 2017, 6(3): 493-499. |
[12] | CHEN Yuqing1,2, ZHANG Hongzhang1,3, YU Ying1,2, QU Chao1, LI Xianfeng1,3, ZHANG Huamin1,3. The R&D status and prospects for primary lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. |
[13] | MING Hai1,2, MING Jun3, QIU Jingyi1,2, ZHANG Wenfeng1,2, ZHANG Songtong1,2, CAO Gaoping1,2. Applications of pre-lithiation technologies in energy storage [J]. Energy Storage Science and Technology, 2017, 6(2): 223-236. |
[14] | WANG Yuhui1,2, JIN Jun1, GUO Zhansheng2, WEN Zhaoyin1. #br# Thermal simulation for lithium-sulfur battery during discharge process [J]. Energy Storage Science and Technology, 2017, 6(1): 85-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||