Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (5): 1709-1719.doi: 10.19799/j.cnki.2095-4239.2021.0311
Previous Articles Next Articles
Bohui LU1(), Zhicheng SHI2, Yongxue ZHANG1,3, Hongyu ZHAO1, Zixi WANG1
Received:
2021-07-02
Revised:
2021-07-14
Online:
2021-09-05
Published:
2021-09-08
CLC Number:
Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit[J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719.
Table 1
Comparison of thermal conductivity enhancement via nanoparticles with similar literatures"
复合相变材料 | 导热系数/(W·m-1·K-1) | 导热系数增长率/% | 参考文献 | |
---|---|---|---|---|
纯相变材料 | 相变材料/纳米颗粒 | |||
石蜡/1.20%CuO | 0.217(固态) | 0.270(固态) | 24.40 | [ |
石蜡/10.00%Al2O3 | 0.197(固态) | 0.259(固态) | 31.47 | [ |
0.148(液态) | 0.167(液态) | 12.84 | ||
棕榈酸/10.00%TiO2 | 0.195(固态) | 0.350(固态) | 79.49 | [ |
石蜡/0.02%纳米石墨 | 0.300(固态) | 0.360(固态) | 20.00 | [ |
石蜡/1.00%炭黑 | 0.260(固态) | 0.323(固态) | 24.23 | [ |
石蜡/1.50%TiO2-Ag | 0.240(固态) | 0.466(固态) | 94.17 | [ |
石蜡/5.00%Fe3O4 | 0.269(固态) | 0.411(固态) | 52.79 | 本研究 |
0.181(液态) | 0.324(液态) | 79.01 |
Table 2
Thermo-physical properties of pure paraffin and composite PCM"
参数 | 纯石蜡 | 复合相变材料 | |||
---|---|---|---|---|---|
熔化过程 | 凝固过程 | 熔化过程 | 凝固过程 | ||
密度/(kg·m-3) | 798.37 | 798.37 | 817.62 | 817.62 | |
固相线温度/K | 321.28 | 313.43 | 320.80 | 314.38 | |
液相线温度/K | 329.78 | 321.69 | 327.60 | 320.59 | |
相变潜热/(J·g-1) | 203.56 | 200.46 | 186.50 | 176.04 | |
体膨胀系数/(1·K-1) | 0.001 | 0.001 | 0.001 | 0.001 | |
比热容/(J·kg-1·K-1) | -819.402+9.08T | 84.048+6.08T | -6.975+6.5T | 1325.359+2.14T | |
导热系数/(W·m-1·K-1) | 0.9258226-0.002204T | 0.9258226-0.002204T | 1.063056-0.002186T | 1.063056-0.002186T | |
动力黏度/(Pa·s) | 0.06498063-0.000173852T | 0.06498063-0.000173852T | 0.4566513-0.001116444T | 0.4566513-0.001116444T |
1 | 新华网.习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. [2020-09-22]. http://www.xinhuanet.com/world/2020-09/22/c_1126527647.htm. |
2 | 刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(3): 1-8. |
LIU X L, CUI L L, LI B, et al. Research on the high-quality development path of China's energy industry under the target of carbon neutralization[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(3): 1-8. | |
3 | 何峰, 李廷贤, 姚金煜, 等. 基于相变储热的太阳能多模式采暖系统及应用[J]. 储能科学与技术, 2019, 8(2): 311-318. |
HE F, LI T X, YAO J Y, et al. Solar multi-mode heating system based on latent heat thermal energy storage and its application[J]. Energy Storage Science and Technology, 2019, 8(2): 311-318. | |
4 | 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190. |
XU Z G, ZHAO C Y, JI Y N, et al. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. | |
5 | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610. |
WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: A critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. | |
6 | 王培伦, 彭志坚, 王述浩, 等. 弯管强化相变储热传热特性的模拟[J]. 储能科学与技术, 2012, 1(2): 116-122. |
WANG P L, PENG Z J, WANG S H, et al. Numerical simulation of heat transfer behaviour of a twisted pipe containing a phase change material[J]. Energy Storage Science and Technology, 2012, 1(2): 116-122. | |
7 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
8 | 李传, 葛志伟, 金翼, 等. 基于复合相变材料储热单元的储热特性[J]. 储能科学与技术, 2015, 4(2): 169-175. |
LI C, GE Z W, JIN Y, et al. Heat transfer behaviour of thermal energy storage components using composite phase change materials[J]. Energy Storage Science and Technology, 2015, 4(2): 169-175. | |
9 | 王君雷, 徐祥贵, 孙通, 等. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522. |
WANG J L, XU X G, SUN T, et al. Simulation of heat storage process in spiral fin phase change heat storage unit[J]. Energy Storage Science and Technology, 2021, 10(2): 514-522. | |
10 | ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: doi: 10.1016/j.apenergy.2019.114102. |
11 | PARK J, CHOI S H, KARNG S W. Cascaded latent thermal energy storage using a charging control method[J]. Energy, 2021, 215: doi: 10.1016/j.energy.2020.119166. |
12 | WANG J, LI Y X, WANG Y, et al. Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites[J]. Solar Energy, 2020, 211: 928-937. |
13 | NOURANI M, HAMDAMI N, KERAMAT J, et al. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity[J]. Renewable Energy, 2016, 88: 474-482. |
14 | SHARMA R K, GANESAN P, TYAGI V V, et al. Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM)[J]. Applied Thermal Engineering, 2016, 99: 1254-1262. |
15 | 刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112. |
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. | |
16 | BOSE P, AMIRTHAM V A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 81-100. |
17 | LAURA C, LAURA F, SIMONEM, et al. Nano-PCMs for enhanced energy storage and passive cooling applications[J]. Applied Thermal Engineering (Design, Processes, Equipment, Economics), 2017(110): 584-589. |
18 | PRABHU B, VALANARASU A. Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems[J]. Renewable Energy, 2020, 152: 358-367. |
19 | LONGEON M, SOUPART A, FOURMIGUÉ J F, et al. Experimental and numerical study of annular PCM storage in the presence of natural convection[J]. Applied Energy, 2013, 112: 175-184. |
20 | AL-ABIDI A A, MAT S, SOPIAN K, et al. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer, 2013, 61: 684-695. |
[1] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[2] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[3] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[4] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[5] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[6] | Tingting DENG, Yingling CAI. Effect of expanded graphite on the melting and solidification of paraffin in cage-drawer water tank [J]. Energy Storage Science and Technology, 2021, 10(1): 190-197. |
[7] | Zhao LI, Baorang LI, Liu CUI, Xiaoze DU. Stability of the thermal performances of molten salt-based nanofluid [J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. |
[8] | WAN Qian, HE Luxi, HE Zhengbin, YI Songlin. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. |
[9] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[10] | XIONG Feng, CHENG Xiaomin, LI Yuanyuan, DAI Pei, WANG Xiuli, ZHONG Hao. Effect of the in situ synthesis of nano-ZnO on the specific heat capacity of solar salt [J]. Energy Storage Science and Technology, 2020, 9(2): 440-447. |
[11] | ZOU Yong, QIU Rudong, WANG Xia. Simulation study on thermal storage process of paraffin phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 101-108. |
[12] | WAN Qian, XIAO Haonan, QIAN Jing, HE Zhengbin, YI Songlin. Influence of iron foam on paraffin phase change heat storage process [J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. |
[13] | XU Zhong, HOU Jing, WAN Shuquan, LI Jun, WU Enhui, LIU Qianshu, GAN Xin. Preparation and thermal properties of metal foam/ paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. |
[14] | SANG Lixia, XU Yongwang, LI Feng, ZHANG Yating, MA Wentong, CHEN Xu, WANG Hao. Preparation of form-stable carbonates/magnesium oxide-flake graphite composite thermal storage material and its thermal conductivity [J]. Energy Storage Science and Technology, 2019, 8(5): 886-890. |
[15] | ZHANG Jiali, DING Yu, QU Lijie, HE Zhengbin, YI Songlin. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||