Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2373-2384.doi: 10.19799/j.cnki.2095-4239.2021.0158
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Lianbing LI1(), Sijia LI2, Jie LI1(), Kun SUN2, Zhengping WANG3, Haiyue YANG3, Bing GAO3, Shaobo YANG4
Received:
2021-04-14
Revised:
2021-06-16
Online:
2021-11-05
Published:
2021-11-03
Contact:
Jie LI
E-mail:lilianbing@hebut.edu.cn;lij@hebut.edu.cn
CLC Number:
Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384.
Table 2
The correlation coefficient between each characteristic quantity and capacity"
特征量 | 充电阶段 | 放电阶段 | 电池容量 | ||||
---|---|---|---|---|---|---|---|
DC | TC | VD | DD | TD | TS | Q | |
DC | 1 | -0.37 | -0.68 | -0.69 | 0.75 | -0.52 | 0.75 |
TC | -0.37 | 1 | 0.59 | 0.66 | -0.68 | 0.63 | -0.68 |
VD | -0.68 | 0.59 | 1 | 0.80 | -0.88 | 0.69 | -0.88 |
DD | -0.69 | 0.66 | 0.80 | 1 | -0.96 | 0.94 | -0.96 |
TD | 0.75 | 0.68 | -0.88 | -0.96 | 1 | -0.88 | 1 |
TS | -0.52 | 0.63 | 0.69 | 0.94 | -0.88 | 1 | -0.89 |
Q | 0.75 | 0.68 | -0.88 | -0.96 | 1 | -0.89 | 1 |
Table 3
Prediction results of battery capacity based on different indirect health factors"
方案号 | 间接健康因子 | RMSE/% | MAE/% | 时间/s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B0005 | B0006 | B0007 | B0018 | B0005 | B0006 | B0007 | B0018 | B0005 | B0006 | B0007 | B0018 | ||
1 | DC、VD、TD、TS | 2.930 | 1.838 | 1.723 | 1.344 | 2.441 | 1.615 | 1.311 | 1.126 | 395 | 422 | 409 | 389 |
2 | TD、TS | 1.825 | 2.824 | 2.473 | 2.014 | 1.483 | 2.126 | 1.902 | 1.742 | 992 | 1085 | 1337 | 1264 |
3 | TC、DD、TD、TS | 1.225 | 1.908 | 1.992 | 1.474 | 0.874 | 1.576 | 1.726 | 1.265 | 243 | 258 | 270 | 267 |
4 | DC、DD | 1.939 | 2.932 | 3.079 | 3.108 | 1.571 | 2.721 | 2.321 | 2.693 | 1211 | 1960 | 1826 | 1794 |
5 | DC、DD、TD、TS | 0.510 | 0.907 | 0.868 | 0.448 | 0.430 | 0.767 | 0.618 | 0.345 | 302 | 367 | 324 | 415 |
Table 5
RUL prediction results for five types of batteries"
电池型号 | 预测起始点 | 预测周期数 | MSE/% | RMSE/% | MAE/% | AE/周期数 |
---|---|---|---|---|---|---|
B0005 | 90 | 77 | 0.195 | 4.420 | 3.360 | 3 |
100 | 67 | 0.003 | 0.510 | 0.430 | 1 | |
110 | 57 | 0.003 | 0.550 | 0.450 | 1 | |
120 | 47 | 0.002 | 0.410 | 0.350 | 0 | |
B0006 | 90 | 76 | 0.124 | 3.521 | 2.555 | 0 |
100 | 66 | 0.955 | 3.090 | 2.450 | 0 | |
110 | 57 | 0.002 | 0.458 | 0.408 | 0 | |
120 | 46 | 0.001 | 0.300 | 0.731 | — | |
B0007 | 90 | 77 | 0.038 | 1.957 | 1.668 | 0 |
100 | 67 | 0.007 | 0.865 | 0.618 | 0 | |
110 | 57 | 0.002 | 0.424 | 0.347 | 0 | |
120 | 47 | 0.003 | 0.575 | 0.469 | 0 | |
B0018 | 70 | 62 | 0.099 | 3.145 | 2.494 | 9 |
80 | 52 | 0.058 | 2.399 | 2.029 | 9 | |
90 | 42 | 0.024 | 1.553 | 1.382 | 4 | |
100 | 32 | 0.004 | 0.651 | 0.533 | 0 |
1 | LI T M, PEI H, PANG Z N, et al. A sequential Bayesian updated Wiener process model for remaining useful life prediction[J]. IEEE Access, 2019, 8: 5471-5480. |
2 | KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: doi: 10.1016/j.jpowsour. 2020.228861. |
3 | GUHA A, PATRA A. Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1836-1849. |
4 | ZHANG H, MO Z L, WANG J Y, et al. Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Reliability, 2020, 69(2): 768-780. |
5 | WANG D, YANG F F, ZHAO Y, et al. Prognostics of lithium-ion batteries based on state space modeling with heterogeneous noise variances[J]. Microelectronics Reliability, 2017, 75: 1-8. |
6 | WANG H Y, SONG W Q, ZIO E, et al. Remaining useful life prediction for lithium-ion batteries using fractional Brownian motion and Fruit-fly optimization algorithm[J]. Measurement, 2020, 161: doi: 10.1016/j.measurement.2020.107904. |
7 | 张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136. |
ZHANG T T, YU M, LI B, et al. Capacity prediction of lithium-ion batteries based on wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136. | |
8 | LI P H, ZHANG Z J, XIONG Q Y, et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources, 2020, 459: doi: 10.1016/j.jpowsour. 2020.228069. |
9 | 李练兵, 祝亚尊, 田永嘉, 等. 基于Elman神经网络的锂离子电池RUL间接预测研究[J]. 电源技术, 2019, 43(6): 1027-1031. |
LI L B, ZHU Y Z, TIAN Y J, et al. RUL indirect prediction of lithium-ion battery based on Elman neural network[J]. Chinese Journal of Power Sources, 2019, 43(6): 1027-1031. | |
10 | LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2020, 68(4): 3170-3180. |
11 | REN L, DONG J B, WANG X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487. |
12 | WANG L M, PAN C F, LIU L, et al. On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Applied Energy, 2016, 168: 465-472. |
13 | XU T T, PENG Z, WU L F. A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current[J]. Energy, 2021, 218: doi: 10.1016/j.energy.2020.119530. |
14 | 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978. |
GUO Y F, HUANG K, LI Z G. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978. | |
15 | 李练兵, 季亮, 祝亚尊, 等. 等效循环电池组剩余使用寿命预测[J]. 工程科学学报, 2020, 42(6): 796-802. |
LI L B, JI L, ZHU Y Z, et al. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. | |
16 | HONKURA K, TAKAHASHI K, HORIBA T. Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of Power Sources, 2011, 196(23): 10141-10147. |
17 | BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005, 139(1/2): 295-303. |
18 | SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Repository, 2007. |
19 | 郝雪玲. 锂离子电池健康状态多指标融合和剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. |
HAO X L. Study on multi-health indicators fusion and remaining useful life prediction for lithium-ion batteries[D]. Harbin: Harbin University of Science and Technology, 2019. | |
20 | ZHANG S Z, ZHAI B Y, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100951. |
21 | LI X Y, YUAN C G, WANG Z P. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228358. |
22 | FONTGALLAND G, PEDRO H J G. Normality and correlation coefficient in estimation of insulators' spectral signature[J]. IEEE Signal Processing Letters, 2015, 22(8): 1175-1179. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[5] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[6] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[7] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[8] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[9] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[10] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[11] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[12] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[13] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[14] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[15] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||