Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3316-3327.doi: 10.19799/j.cnki.2095-4239.2022.0165
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Fang LI, Yongjun MIN(), Chen WANG, Yong ZHANG
Received:
2022-03-28
Revised:
2022-04-25
Online:
2022-10-05
Published:
2022-10-10
Contact:
Yongjun MIN
E-mail:yjmin@njfu.edu.cn
CLC Number:
Fang LI, Yongjun MIN, Chen WANG, Yong ZHANG. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327.
Table 1
Relevance analysis results of battery characteristic parameters"
电池型号 | 相关性 分析方法 | T∆V | Temp t-max | TCC | V1000 | SV | TCV | TCC/TCV | Tempmax | Tempaverage |
---|---|---|---|---|---|---|---|---|---|---|
B0005 | Pearson | 0.9961 | 0.9958 | 0.9963 | -0.9820 | 0.9965 | -0.9115 | -0.9822 | -0.5038 | 0.0119 |
MIC | 0.9727 | 0.9672 | 0.9727 | 0.9702 | 0.9727 | 0.8037 | 0.9422 | 0.6004 | 0.3803 | |
B0006 | Pearson | 0.9899 | 0.9904 | 0.9906 | -0.9788 | 0.9907 | -0.9372 | -0.9523 | 0.3451 | 0.2543 |
MIC | 0.9727 | 0.9591 | 0.9727 | 0.9727 | 0.9727 | 0.8005 | 0.9349 | 0.3811 | 0.4040 | |
B0007 | Pearson | 0.9890 | 0.9923 | 0.9929 | -0.9680 | 0.9927 | -0.8828 | -0.9799 | -0.4357 | 0.0948 |
MIC | 0.9727 | 0.9807 | 0.9807 | 0.9546 | 0.9727 | 0.6998 | 0.8926 | 0.6124 | 0.4110 | |
B0018 | Pearson | 0.9854 | 0.9876 | 0.9803 | -0.9727 | 0.9819 | -0.4089 | -0.8854 | -0.0236 | 0.1611 |
MIC | 0.9791 | 0.9697 | 0.9697 | 0.9791 | 0.9697 | 0.7087 | 0.9632 | 0.1847 | 0.1197 |
Table 3
Hyperparametric of Gaussian process regression model"
电池型号 | [a;b] | |
---|---|---|
B0005 | [0.0893; 1.6571] | [-2.2319; -4.5958; 1.7447; 4.0460; -2.1070] |
B0006 | [0.1588; 1.5570] | [0.9150; 1.7572; 3.3170; 0.9777; -4.7147] |
B0007 | [0.0761; 1.6475] | [4.5495; 2.2757; -4.1064; 3.9239; -0.8211] |
B0018 | [0.0824; 1.5801] | [-4.2300; -4.0529; 2.3312; 2.9800; -2.4340] |
Table 4
Evaluation of SOH estimation results for different covariance kernel functions"
电池型号 | PE-GPR | NN-GPR | NN+PE-GPR | PSO- NN+PE-GPR | ||||
---|---|---|---|---|---|---|---|---|
MAPE/% | RMSE | MAPE/% | RMSE | MAPE/% | RMSE | MAPE/% | RMSE | |
B0005 | 8.4889 | 0.0767 | 3.2967 | 0.0290 | 2.9605 | 0.0220 | 0.6426 | 0.0070 |
B0006 | 7.5277 | 0.0554 | 5.9013 | 0.0452 | 2.5350 | 0.0197 | 1.0376 | 0.0092 |
B0007 | 3.9387 | 0.0384 | 3.4364 | 0.0259 | 2.5054 | 0.0204 | 0.5022 | 0.0051 |
B0018 | 5.6665 | 0.0416 | 3.4991 | 0.0324 | 1.8643 | 0.0200 | 0.9604 | 0.0148 |
Table 6
Evaluation of SOH and RUL prediction results by different methods"
电池型号 | GPR | 文献[ | 文献[ | 二次函数拟合 | ||||
---|---|---|---|---|---|---|---|---|
SOH预测 MAPE/% | SOH预测 RMSE | RUL绝对 误差 | RUL绝对 误差 | SOH预测 RMSE | SOH预测 MAPE/% | SOH预测RMSE | RUL绝对 误差 | |
B0005 | 0.9393 | 0.0086 | 0 | 0.0155 | 15.5748 | 0.1230 | 16 | |
B0006 | 1.4152 | 0.0115 | 0 | 0.0281 | 4.8294 | 0.0329 | 6 | |
B0007 | 0.7030 | 0.0064 | 1 | — | 0.0148 | 11.8410 | 0.0987 | 18 |
B0018 | 1.8957 | 0.0169 | 1 | — | 0.0143 | 4.9786 | 0.0446 | 2 |
1 | SUN Z Y, HAN Y, WANG Z P, et al. Detection of voltage fault in the battery system of electric vehicles using statistical analysis[J]. Applied Energy, 2022, 307: doi:10.1016/j.apenergy.2021.118172. |
2 | YANG R X, XIONG R, MA S X, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: doi:10.1016/j.apenergy.2021.114253. |
3 | HU J, WEI Z B, HE H W. An online adaptive internal short circuit detection method of lithium-ion battery[J]. Automotive Innovation, 2021, 4(1): 93-102. |
4 | UNGUREAN L, CÂRSTOIU G, MICEA M V, et al. Battery state of health estimation: A structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181. |
5 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325. |
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325. | |
6 | YANG D, WANG Y J, PAN R, et al. A neural network based state-of-health estimation of lithium-ion battery in electric vehicles[J]. Energy Procedia, 2017, 105: 2059-2064. |
7 | WEI M, YE M, WANG Q, et al. State-of-health estimation and remaining useful life prediction of lithium-ion batteries based on extreme learning machine[J]. Journal of Physics: Conference Series, 2021, 1983(1): 012058. |
8 | SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: doi:10.1016/j.est.2019.100817 |
9 | 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245. |
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. | |
10 | FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 25: doi:10.1016/j.est.2020.101741. |
11 | TSANG K M, CHAN W L. State of health detection for Lithium ion batteries in photovoltaic system[J]. Energy Conversion and Management, 2013, 65: 7-12. |
12 | ZHANG J A, WANG P, GONG Q R, et al. SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model[J]. Journal of Power Electronics, 2021, 21(11): 1712-1723. |
13 | WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 5: 21286-21295. |
14 | 杨胜杰, 罗冰洋, 王菁, 等. 基于差分热伏安法的锂离子电池SOH诊断[J]. 电源技术, 2021, 45(11): 1427-1430. |
YANG S J, LUO B Y, WANG J, et al. State of health diagnosis for lithiumion batteries based on differential thermal voltammetry[J]. Chinese Journal of Power Sources, 2021, 45(11): 1427-1430. | |
15 | HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2645-2656. |
16 | HUANG Y S, QIN L L, WU G. State of health estimation based on constant current charging profiles[C]//2021 40th Chinese Control Conference (CCC). Shanghai, China. IEEE, 2021: 5899-5904. |
17 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | |
18 | LIU W, XU Y, FENG X. A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14739-14748. |
19 | SON S, JEONG S, KWAK E, et al. Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features[J]. Energy, 2022, 238: 25: doi:10.1016/j.energy.2021.121712. |
20 | QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191. |
21 | RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. |
22 | KOBAYASHI Y, MIYASHIRO H, YAMAZAKI A, et al. Unexpected capacity fade and recovery mechanism of LiFePO4/graphite cells for grid operation[J]. Journal of Power Sources, 2020, 449: doi:10.1016/j.jpowsour.2019.227502. |
23 | BANERJEE A, DUNSON D B, TOKDAR S T. Efficient Gaussian process regression for large datasets[J]. Biometrika, 2012, 100(1): 75-89. |
24 | 佘承其, 张照生, 刘鹏, 等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报, 2019, 55(20): 3-16. |
SHE C Q, ZHANG Z S, LIU P, et al. Overview of the application of big data analysis technology in new energy vehicle industry: Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 3-16. | |
25 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi:10.1016/j.rser.2019.109254. |
26 | 刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. |
LIU J, CHEN Z Q, HUANG D Y, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1058-1065. | |
27 | XIANG M, HE Y G, ZHANG H, et al. State-of-health prognosis for lithium-ion batteries considering the limitations in measurements via maximal information entropy and collective sparse variational Gaussian process[J]. IEEE Access, 2020, 8: 188199-188217. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[5] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[6] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[7] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[8] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[9] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[10] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[11] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[12] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[13] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||