Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3574-3582.doi: 10.19799/j.cnki.2095-4239.2022.0299
• Energy Storage System and Engineering • Previous Articles Next Articles
Zhenyi WANG(), Sai ZHANG(), Shiwang HU
Received:
2022-06-01
Revised:
2022-07-09
Online:
2022-11-05
Published:
2022-11-09
Contact:
Sai ZHANG
E-mail:1459127219@qq.com;sai_zh@163.com
CLC Number:
Zhenyi WANG, Sai ZHANG, Shiwang HU. Fractal modeling and thermal chemical coupling of electrode microstructure of lithium battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3574-3582.
1 | ZHUO H X, LIU Y, WANG Z Y, et al. Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure[J]. Nano Energy, 2021, 83: doi:10.1016/j.nanoen.2021.105812. |
2 | FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
3 | WANG D, LIU W H, ZHANG X H, et al. Review of modified nickel-cobalt lithium aluminate cathode materials for lithium-ion batteries[J]. International Journal of Photoenergy, 2019, (8): 1-13. |
4 | Fang R, Ge H, Wang Z, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of The Electrochemical Society, 2019, 167(13):doi: 10.1149/1945-7111/abb83a. |
5 | 方儒卿, 张娜, 李哲. 3类锂离子电池多孔电极模型比较研究及电池正向设计应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1055-1065. |
FANG R Q, ZHANG N, LI Z. Comparison study of three porous electrode models for the forward design of lithium-ion batteries[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(10): 1055-1065. | |
6 | Dokko K, Nakata N, Suzuki Y, et al. High-rate lithium deintercalation from lithiated graphite single-particle electrode [J]. The Journal of Physical Chemistry C, 2010, 114(18): 8646-8650. |
7 | MUNAKATA H, TAKEMURA B, SAITO T, et al. Evaluation of real performance of LiFePO4 by using single particle technique[J]. Journal of Power Sources, 2012, 217: 444-448. |
8 | UMIROV N, YAMADA Y, MUNAKATA H, et al. Analysis of intrinsic properties of Li4Ti5O12 using single-particle technique[J]. Journal of Electroanalytical Chemistry, 2019, 855: doi:10.1016/j.jelechem.2019.113514. |
9 | GALLAGHER K G, TRASK S E, BAUER C, et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2015, 163(2): doi: 10.1149/2.0321602jes. |
10 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071. |
11 | SHIRAZI A H N, AZADI KAKAVAND M R, RABCZUK T. Numerical study of composite electrode's particle size effect on the electrochemical and heat generation of a Li-ion battery[J]. Journal of Nanotechnology in Engineering and Medicine, 2015, 6(4): doi:10.1115/1.4032012. |
12 | HONG J H, WEI W F, HE G. Optimizing the particle-size distribution and tap density of LiFePO4/C composites containing excess lithium[J]. Ionics, 2019, 25(5): 2035-2039. |
13 | Chen L, Chen Z, Liu S, et al. Effects of particle size distribution on compacted density of lithium iron phosphate 18650 battery[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): 041011. |
14 | 许于, 陈怡沁, 周静红, 等. LiFePO4锂离子电池的数值模拟: 正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830. |
XU Y, CHEN Y Q, ZHOU J H, et al. Numerical simulation of lithium-ion battery with LiFePO4 as cathode material: Effect of particle size[J]. CIESC Journal, 2020, 71(2): 821-830. | |
15 | NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41. |
16 | RÖDER F, SONNTAG S, SCHRÖDER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12): 1588-1597. |
17 | ANTARTIS D, DILLON S, CHASIOTIS I. Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes[J]. Journal of Composite Materials, 2015, 49: 1849-1862. |
18 | 王慧艳, 陈怡沁, 周静红, 等. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022(1): 376-383. |
WANG H Y, CHEN Y Q, ZHOU J H, et al. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization[J]. CIESC Journal, 2022(1): 376-383. | |
19 | 陈怡沁, 许于, 周静红, 等. 锂离子电池异构建模及内部传质机理探究:粒径分布的影响[J]. 化工学报, 2021, 72(2): 1078-1088. |
CHEN Y Q, XU Y, ZHOU J H, et al. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: Effect of particle size distribution[J]. CIESC Journal, 2021, 72(2): 1078-1088. | |
20 | PATEL K K, PAULSEN J M, DESILVESTRO J. Numerical simulation of porous networks in relation to battery electrodes and separators[J]. Journal of Power Sources, 2003, 122(2): 144-152. |
21 | DAS P K, LI X G, LIU Z S. Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation[J]. Applied Energy, 2010, 87(9): 2785-2796. |
22 | Fan D, White R E. A mathematical model of sealed nickel-cadmium battery[J]. Journal of The Electrochemical Society, 1991, 138(1): 17-25. |
23 | Thomas F. Fuller; Marc Doyle; John N. Simulation and optimization of the dual lithium ion insertion cell[J]. The Journal of Electrochemical Society, 1993, 144(1): 1-10. |
24 | 杨鹏. 锂离子电池多孔电极微观结构的分形特征[J]. 科技创新与应用, 2013(36): 20-21. |
YANG P. Fractal characteristics of porous electrode microstructure of lithium-ion battery[J]. Technology Innovation and Application, 2013(36): 20-21. | |
25 | 吴伟, 蒋方明, 曾建邦. LiCoO2电池正极微结构重构及有效传输系数预测[J]. 物理化学学报, 2013, 29(11): 2361-2370. |
WU W, JIANG F M, ZENG J B. Reconstruction of LiCoO2 cathode microstructure and prediction of effective transport coefficients[J]. Acta Physico-Chimica Sinica, 2013, 29(11): 2361-2370. | |
26 | 王子珩. 团聚体堆叠型多孔电极模型构建与应用[D]. 北京: 清华大学, 2017. |
WANG Z H. Modeling of porous electrode using stacked-agglomerates[D]. Beijing: Tsinghua University, 2017. | |
27 | 郁伯铭, 徐鹏, 邹明清. 分形多孔介质输运物理[M]. 北京: 科学出版社, 2014. |
YU B M, XU P, ZOU M Q. Transport physics in fractal porous media [M]. Beijing: Science Press, 2014. | |
28 | YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 227-238. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[5] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[6] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[7] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[8] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[9] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[10] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[11] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[12] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[13] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||