Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3658-3666.doi: 10.19799/j.cnki.2095-4239.2022.0270
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2022-05-19
Revised:
2022-06-08
Online:
2022-11-05
Published:
2022-11-09
Contact:
Qianjun MAO
E-mail:maoqianjun@163.com
CLC Number:
Qianjun MAO, Kaili CHEN. Heat transfer performance study of wedge-shaped shell-and-tube heat storage tank[J]. Energy Storage Science and Technology, 2022, 11(11): 3658-3666.
Table 1
Thermophysical parameters of paraffin wax"
物理量 | 测试条件 | 模拟方法 | 数值 |
---|---|---|---|
密度 | 303~353 K | Boussinesq | 885 kg/m3 |
比热容 | 303~353 K | Piecewise-linear | 303 K: 7103 J/(kg·K); 313 K: 3085 J/(kg·K); 323 K: 11530 J/(kg·K) 333 K: 2097 J/(kg·K); 343 K: 2106 J/(kg·K); 353 K: 2130 J/(kg·K) |
热导率 | 303~353 K | Constant | 0.279 W/(m·K) |
动态黏度 | / | Constant | 1.72e-05 kg/(m·s) |
热膨胀系数 | / | Constant | 0.0006 K-1 |
相变潜热 | 253~363 K | Constant | 172620 J/kg |
固相温度 | 253~363 K | Constant | 302 K |
液相温度 | 253~363 K | Constant | 322 K |
1 | 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190. |
XU Z G, ZHAO C Y, JI Y N, et al. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. | |
2 | 程素雅, 陈宝明, 郭梦雪, 等. 翅片排布方式对矩形腔相变材料熔化的影响[J]. 煤气与热力, 2020, 40(4): 7-12, 15, 41. |
CHENG S Y, CHEN B M, GUO M X, et al. Effect of fin arrangement on melting of phase change material in rectangular cavity[J]. Gas & Heat, 2020, 40(4): 7-12, 15, 41. | |
3 | HASSAN A K, ABDULATEEF J, MAHDI M S, et al. Experimental evaluation of thermal performance of two different finned latent heat storage systems[J]. Case Studies in Thermal Engineering, 2020, 21: doi: 10.1016/j.csite.2020.100675. |
4 | 刘芳, 于航. 泡沫金属/石蜡复合相变材料蓄热过程的数值模拟[J]. 建筑节能, 2010, 38(2): 38-40. |
LIU F, YU H. Numerical simulation of metal foam/paraffin melting process[J]. Building Energy Efficiency, 2010, 38(2): 38-40. | |
5 | MANI D, SARANPRABHU M K, RAJAN K S. Intensification of thermal energy storage using copper-pentaerythritol nanocomposites for renewable energy utilization[J]. Renewable Energy, 2021, 163: 625-634. |
6 | 杨磊, 张小松. 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63(4): 1032-1037. |
YANG L, ZHANG X S. Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4): 1032-1037. | |
7 | 李超, 马良栋, 张吉礼, 等. 多相变材料蓄热器蓄热特性数值模拟研究[J]. 建筑热能通风空调, 2015, 34(5): 18-22. |
LI C, MA L D, ZHANG J L, et al. Numerical simulation of thermal energy storage characteristics of multiple phase change materials[J]. Building Energy & Environment, 2015, 34(5): 18-22. | |
8 | 李赛维, 陶希军, 孙志强. 结构参数对管壳式相变储热单元熔化过程性能提升的影响[J]. 中南大学学报(自然科学版), 2021, 52(1): 8-18. |
LI S W, TAO X J, SUN Z Q. Influence of structural parameters on improvement of melting performance in shell-and-tube latent heat storage unit[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 8-18. | |
9 | 袁艳平, 吉洪湖, 杜雁霞. 相变储能单元融化过程的传热强化[J]. 南京航空航天大学学报, 2008, 40(2): 151-156. |
YUAN Y P, JI H H, DU Y X. Enhancement of heat transfer for thermal storage cells during melting process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(2): 151-156. | |
10 | KUMAR A, SAHA S K. Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system[J]. Renewable Energy, 2021, 165: 731-747. |
11 | 霍宇涛, 陈之琳, 饶中浩. 方腔内相变材料固液相变传热研究[J]. 工程热物理学报, 2020, 41(3): 615-620. |
HUO Y T, CHEN Z L, RAO Z H. Investigation of heat transfer for solid-liquid phase change in a square cavity[J]. Journal of Engineering Thermophysics, 2020, 41(3): 615-620. | |
12 | QAISER R, KHAN M M, AHMED H F, et al. Performance enhancement of latent energy storage system using effective designs of tubes and shell[J]. Energy Reports, 2022, 8: 3856-3872. |
13 | SODHI G S, KUMAR V, MUTHUKUMAR P. Design assessment of a horizontal shell and tube latent heat storage system: Alternative to fin designs[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103282. |
14 | 张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. | |
15 | MAO Q J, LI Y. Experimental and numerical investigation on enhancing heat transfer performance of a phase change thermal storage tank[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101725. |
16 | 赵敬德, 樊杰, 杜畅. 肋片长度对相变材料熔化过程影响的数值模拟[J]. 东华大学学报(自然科学版), 2021, 47(4): 93-98. |
ZHAO J D, FAN J, DU C. Numerical simulation of the effect of fin length on melting process of phase change materials[J]. Journal of Donghua University (Natural Science), 2021, 47(4): 93-98. | |
17 | SEDDEGH S, WANG X L, HENDERSON A D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358. |
18 | SHEN G, WANG X L, CHAN A, et al. Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system[J]. Solar Energy, 2020, 211: 732-743. |
19 | 周慧琳, 邱燕. 矩形单元蓄热特性及结构优化[J]. 储能科学与技术, 2020, 9(4): 1082-1090. |
ZHOU H L, QIU Y. Heat storage characteristic and structure optimum inrectangular unit[J]. Energy Storage Science and Technology, 2020, 9(4): 1082-1090. |
[1] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
[2] | Qi ZHANG, Yujing WANG, Yinlei LI, Chongyang LIU. A novel composite phase change material with cold storage and insulation and its application [J]. Energy Storage Science and Technology, 2022, 11(10): 3133-3141. |
[3] | Zijie XU, Yan WANG. Thermal storage properties of porous inorganic composite phase change material [J]. Energy Storage Science and Technology, 2022, 11(10): 3171-3179. |
[4] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[5] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[6] | Lihui LIU, Yajing MO, Xiaoqin SUN, Jie LI. Thermal storage characteristics and optimization of plate-type phase change energy storage unit [J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789. |
[7] | Yiqian GAO, Yi LIU, Ling LI. Numerical simulation of natural convection melting inside a triangular cavity using Lattice Boltzmann method [J]. Energy Storage Science and Technology, 2020, 9(6): 1798-1805. |
[8] | ZHOU Huilin, QIU Yan. Heat storage characteristic and structure optimum inrectangular unit [J]. Energy Storage Science and Technology, 2020, 9(4): 1082-1090. |
[9] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[10] | ZOU Yong, QIU Rudong, WANG Xia. Simulation study on thermal storage process of paraffin phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 101-108. |
[11] | YANG Zhishun, CHEN Lihua, XIA Zhenhua. Numerical investigation of the thermal mechanism of the solid-liquid phase changing process [J]. Energy Storage Science and Technology, 2019, 8(6): 1217-1223. |
[12] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[13] | LIU Peng, GU Xiaobin, QIN Shan. State-of-the-art development of numerical simulations of phase change materials based systems [J]. Energy Storage Science and Technology, 2018, 7(2): 221-231. |
[14] | CHEN Hu, WU Yuting, LU Yuanwei, MA Chongfang. A review on molten salt-based nanofluids: Recent developments [J]. Energy Storage Science and Technology, 2018, 7(1): 48-. |
[15] | SHI Wenhua1, ZHU Xingyuan1, ZHU Jiaoqun1, LIU Fengli1,2, LI Ruguang1, ZHANG Hongguang1. Preparation and characterization of gypsum composites containing cupric- palmitic acid based phase change material in diatomite [J]. Energy Storage Science and Technology, 2017, 6(6): 1306-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||