Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3836-3844.doi: 10.19799/j.cnki.2095-4239.2022.0414
• Energy Storage Materials and Devices • Previous Articles Next Articles
Bochao YANG(), Jie LÜ, Ziwei ZHEN, Jianjun WANG, Yuxia SHEN, Yu ZHANG, Yi WANG()
Received:
2022-07-25
Revised:
2022-08-08
Online:
2022-12-05
Published:
2022-12-29
Contact:
Yi WANG
E-mail:baochaoyang2022@163.com;wangyi@lut.edu.cn
CLC Number:
Bochao YANG, Jie LÜ, Ziwei ZHEN, Jianjun WANG, Yuxia SHEN, Yu ZHANG, Yi WANG. Crystallization kinetics of stearic acid and stearic acid/MXene composite phase change materials[J]. Energy Storage Science and Technology, 2022, 11(12): 3836-3844.
Table 1
Kinetic parameters of SA and SA/MXene during isothermal crystallization process"
样品 | 结晶过程 | Tc/℃ | t1/2/min | G/min-1 | n | K | R2 |
---|---|---|---|---|---|---|---|
SA | 熔融结晶 | 57 | 0.36 | 2.78 | 1.94 | 5.91 | 0.99 |
65 | 0.55 | 1.82 | 1.57 | 2.04 | 0.99 | ||
冷结晶 | 57 | 0.50 | 2.00 | 2.72 | 3.76 | 0.96 | |
65 | 0.46 | 2.17 | 2.51 | 4.39 | 0.99 | ||
SA/MXene | 熔融结晶 | 73 | 0.31 | 3.23 | 2.43 | 13.07 | 0.99 |
81 | 0.26 | 3.85 | 1.82 | 8.37 | 0.99 | ||
冷结晶 | 73 | 0.35 | 2.86 | 2.14 | 6.49 | 0.99 | |
81 | 0.48 | 2.08 | 3.13 | 4.76 | 0.95 |
Fig. 7
The relationship between lg[-ln(1- Xt )] and lg(t) [(a),(b)], the plots of non-isothermal crystallization rate versus cooling rate (c), the relationship between cooling rate and the crystallization time [(d),(e)] and the relationship between cooling function and relative crystallinity (f) of SA and SA/MXene"
1 | MEHRALI M, ELSHOF J E, SHAHI M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J]. Chemical Engineering Journal, 2021, 405: doi: 10.1016/j.cej.2020.126624. |
2 | 包信和. 纳米限域及能源分子的催化转化[J]. 科学通报, 2018, 63(14): 1266-1274, 1265. |
BAO X H. Nano confinement and catalytic conversion of energy molecules[J]. Chinese Science Bulletin, 2018, 63(14): 1266-1274, 1265. | |
3 | 邢晓红, 欧阳金波, 周利民, 等. 限域空间内的结晶研究进展[J]. 化学工业与工程, 2022, 39(5): 39-48. |
XING X H, OUYANG J B, ZHOU L M, et al. Research progress of crystallization in confined space[J]. Chemical Industry and Engineering, 2022, 39(5): 39-48. | |
4 | UVANESH K, SAGIRI S S, SENTHILGURU K, et al. Effect of span 60 on the microstructure, crystallization kinetics, and mechanical properties of stearic acid oleogels: An in-depth analysis[J]. Journal of Food Science, 2016, 81(2): E380-E387. |
5 | PIELICHOWSKA K, PIELICHOWSKI K. Kinetics of isothermal and nonisothermal crystallization of poly(ethylene oxide) (PEO) in PEO/fatty acid blends[J]. Journal of Macromolecular Science, Part B, 2011, 50(9): 1714-1738. |
6 | 周卫兵, 张磊, 朱教群, 等. 硬脂酸/膨胀石墨复合相变储热的动力学研究[J]. 武汉理工大学学报, 2012, 34(7): 9-13. |
ZHOU W B, ZHANG L, ZHU J Q, et al. Kinetics study of phase change on stearic acid/expanded graphite composite as heat storage material[J]. Journal of Wuhan University of Technolgy, 2012, 34(7): 9-13. | |
7 | HA J M, HAMILTON B D, HILLMYER M A, et al. Phase behavior and polymorphism of organic crystals confined within nanoscale chambers[J]. Crystal Growth & Design, 2009, 9(11): 4766-4777. |
8 | WANG L P, SUI J, ZHAI M, et al. Physical control of phase behavior of hexadecane in nanopores[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18697-18706. |
9 | LI B X, LIU T X, HU L Y, et al. Facile preparation and adjustable thermal property of stearic acid-graphene oxide composite as shape-stabilized phase change material[J]. Chemical Engineering Journal, 2013, 215/216: 819-826. |
10 | LIU Z F, CHEN Z H, YU F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: doi: 10.1016/j.solmat.2019.110004 |
11 | KADOONO T, OGURA M. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(12): 5495-5498. |
12 | ZHANG Y Z, ZHENG S L, ZHU S Q, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361-370. |
13 | WANG J J, ZHANG T, SHEN Y X, et al. Polyethylene glycol/nanofibrous Kevlar aerogel composite: Fabrication, confinement effect, thermal energy storage and insulation performance[J]. Materials Today Communications, 2022, 32: doi: 10.1016/j.mtcomm.2022.104011. |
14 | YU K Y, LIU Y S, YANG Y Z. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties[J]. Applied Energy, 2021, 292: doi: 10.1016/j.apenergy.2021.116845. |
15 | MO Z J, MO P J, YI M M, et al. Ti3C2Tx@Polyvinyl alcohol foam-supported phase change materials with simultaneous enhanced thermal conductivity and solar-thermal conversion performance[J]. Solar Energy Materials and Solar Cells, 2021, 219: doi: 10.1016/j.solmat.2020.110813 |
16 | 牛慧, 秦亚伟, 董金勇. 用DSC方法研究β-定向结晶聚丙烯树脂的结晶动力学[J]. 石油化工, 2014, 43(11): 1240-1245. |
NIU H, QIN Y W, DONG J Y. Study of crystallization kinetics of β-crystalline-specified polypropylene resins by DSC[J]. Petrochemical Technolgy, 2014, 43(11): 1240-1245. | |
17 | WINSECK M M, CHENG H Y, SANTALA M K. Characterization of low temperature crystal growth parameters of the growth-dominated phase change materials GeSb6Te[J]. Journal of Non-Crystalline Solids, 2020, 547: doi: 10.1016/j.jnoncrysol. 2020.120317. |
18 | 张予东, 崔新盼, 邹易谙, 等. 聚乳酸/可分散性纳米二氧化硅复合材料等温结晶行为研究[J]. 化学研究, 2018, 29(6): 614-620. |
ZHANG Y D, CUI X P, ZOU Y A, et al. Isothermal crystallization behavior of PLA/dispersible nano-SiO2 composites[J]. Chemical Research, 2018, 29(6): 614-620. | |
19 | AVRAMI M. Kinetics of phase change. I: general theory[J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112. |
20 | JEZIORNY A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C[J]. Polymer, 1978, 19(10): 1142-1144. |
21 | OZAWA T. Kinetics of non-isothermal crystallization[J]. Polymer, 1971, 12(3): 150-158. |
22 | LIU T X, MO Z S, WANG S E, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polymer Engineering & Science, 1997, 37(3): 568-575. |
23 | KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. |
24 | LAYACHI A, MAKHLOUF A, FRIHI D, et al. Non-isothermal crystallization kinetics and nucleation behavior of isotactic polypropylene composites with micro-talc[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1081-1095. |
25 | 何曼君, 张红东, 陈维孝. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2007. |
HE M J, ZHANG H D, CHEN W X. Polymer physics[M]. 3rd. Shanghai: Fudan University Press, 2007. | |
26 | ZHISHEN M. A method for the non-isothermal crystallization kinetics of polymers[J]. Acta Polymerica Sinica, 2008, 1(7): 656-661. |
27 | MAFFEZZOLI A, KENNY J, TORRE L. On the physical dimensions of the Avrami constant[J]. Thermochimica Acta, 1995, 269/270: 185-190. |
28 | MORENO E, CORDOBILLA R, CALVET T, et al. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid [J]. New Journal of Chemistry, 2007, 31(6):947-957. |
29 | KANEKO F, KOBAYASHI M, KITAGAWA Y, et al. Structure of stearic acid form[J]. Acta Crystallgr. C, 1990, 46: 1490-1492. |
30 | YONG D. Effect of Ag nanowires on crystallization behavior of polyethylene glycol/expanded vermiculite composite phase change material[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102223. |
31 | ZHANG S D, WANG S S, ZHANG J, et al. Increasing phase change latent heat of stearic acid via nanocapsule interface confinement[J]. The Journal of Physical Chemistry C, 2013, 117(44): 23412-23417. |
[1] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[2] | Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 982-990. |
[3] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[4] | MENG Qi, LIU Xiaohui, SUN Mingze, WANG Qiyang, BI Hong. Elecrochemical performance of MXene/silver nanowire supercapacitor electrode material [J]. Energy Storage Science and Technology, 2019, 8(6): 1126-1131. |
[5] | YANG Yuehao, CHENG Xiaomin, LI Dan, LI Yuanyuan. Properties of stearic acid/modified carbon nanotube composite phase change materials [J]. Energy Storage Science and Technology, 2019, 8(4): 759-763. |
[6] | SUN Helei, LI Yunfei, YI Ronghua, WANG Ruochong, ZHOU Aijun, SUN Yimin. Preparation and characterization of electrochemical properties of nitrogen and boron co-doped MXene composite materials [J]. Energy Storage Science and Technology, 2019, 8(1): 130-137. |
[7] | LI Dan, CHENG Xiaomin, LI Yuanyuan. Thermal properties of a modified MOF-stearic acid composite phase change materials [J]. Energy Storage Science and Technology, 2018, 7(4): 654-660. |
[8] | YAO Naiyuan, XIAN Cunni. Research progress of two-dimensional transition metal carbides and carbonitrides materials for fuel-cell catalysts [J]. Energy Storage Science and Technology, 2018, 7(4): 631-638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||