Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 878-896.doi: 10.19799/j.cnki.2095-4239.2022.0050
Previous Articles Next Articles
Jinping LIU1(), Bowei PU1, Zheyi ZOU2, Mingqing LI1, Yuqing DING1, Yuan REN1, Yaqiao LUO1, Jie LI3, Yajie LI1, Da WANG1, Bing HE4, Siqi SHI1,5,6()
Received:
2022-01-28
Revised:
2022-02-12
Online:
2022-03-05
Published:
2022-03-11
Contact:
Siqi SHI
E-mail:506094182@qq.cm;sqshi@shu.edu.cn
CLC Number:
Jinping LIU, Bowei PU, Zheyi ZOU, Mingqing LI, Yuqing DING, Yuan REN, Yaqiao LUO, Jie LI, Yajie LI, Da WANG, Bing HE, Siqi SHI. Investigating thermodynamic and kinetic properties of ionic conductors via Monte Carlo simulation[J]. Energy Storage Science and Technology, 2022, 11(3): 878-896.
1 | GROSJEAN C, MIRANDA P H, PERRIN M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744. |
2 | 卢侠, 李泓. 锂电池基础科学问题(Ⅱ)——电池材料缺陷化学[J]. 储能科学与技术, 2013, 2(2): 157-164. |
LU X, LI H. Fundamental scientific aspects of lithium batteries (Ⅱ)—Defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013, 2(2): 157-164. | |
3 | FLURI A, MARCOLONGO A, RODDATIS V, et al. Enhanced proton conductivity in Y-doped BaZrO3 via strain engineering[J]. Advanced Science, 2017, 4(12): doi: 10.1002/advs.201700467. |
4 | YAN J, WANG Q, WEI T, et al. Supercapacitors: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): doi: 10.1002/aenm.201300816. |
5 | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038/natrevmats.2016.103. |
6 | HE B, YE A, CHI S, et al. CAVD, towards better characterization of void space for ionic transport analysis[J]. Scientific Data, 2020, 7: doi: 10.1038/s41597-020-0491-x. |
7 | BLATOV V A, SHEVCHENKO A P, PROSERPIO D M. Applied topological analysis of crystal structures with the program package ToposPro[J]. Crystal Growth & Design, 2014, 14(7): 3576-3586. |
8 | CHEN H M, WONG L L, ADAMS S. SoftBV—A software tool for screening the materials genome of inorganic fast ion conductors[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2019, 75(Pt 1): 18-33. |
9 | WONG L L, PHUAH K C, DAI R Y, et al. Bond valence pathway analyzer—An automatic rapid screening tool for fast ion conductors within softBV[J]. Chemistry of Materials, 2021, 33(2): 625-641. |
10 | ZOU Z Y, MA N, WANG A P, et al. Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON[J]. Advanced Energy Materials, 2020, 10(30): doi: 10.1002/aenm.202001486. |
11 | MOON J, LEE B, CHO M, et al. Ab initio and kinetic Monte Carlo simulation study of lithiation in crystalline and amorphous silicon[J]. Journal of Power Sources, 2014, 272: 1010-1017. |
12 | MURCH G E. The haven ratio in fast ionic conductors[J]. Solid State Ionics, 1982, 7(3): 177-198. |
13 | LU X Y. Application of the Nernst-Einstein equation to concrete[J]. Cement and Concrete Research, 1997, 27(2): 293-302. |
14 | DE KLERK N J J, VAN DER MAAS E, WAGEMAKER M. Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in β-Li3PS4 as an example[J]. ACS Applied Energy Materials, 2018, 1(7): 3230-3242. |
15 | HE X, ZHU Y, MO Y. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: doi: 10.1038/ncomms15893. |
16 | ZHU P P, SMITH R W. Dynamic simulation of crystal growth by Monte Carlo method—I. Model description and kinetics[J]. Acta Metallurgica et Materialia, 1992, 40(4): 683-692. |
17 | BÉJAUD R, DURINCK J, BROCHARD S. Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study[J]. Acta Materialia, 2018, 144: 314-324. |
18 | LYU D, WANG W, LIU J P, et al. Phase diagrams and magnetic properties of a ferrimagnetic Ising bilayer superlattice: A Monte Carlo study[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 348-359. |
19 | KAR P, HARINIPRIYA S. Modeling of lithium ion batteries employing grand canonical Monte Carlo and multiscale simulation[J]. Journal of the Electrochemical Society, 2014, 161(5): A726-A735. |
20 | MORGAN B J. Lattice-geometry effects in garnet solid electrolytes: A lattice-gas Monte Carlo simulation study[J]. Royal Society Open Science, 2017, 4(11): doi: 10.1098/rsos.170824. |
21 | WANG W, BI J L, LIU R J, et al. Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire[J]. Superlattices and Microstructures, 2016, 98: 433-447. |
22 | MALIK R, ZHOU F, CEDER G. Phase diagram and electrochemical properties of mixed olivines from first-principles calculations[J]. Physical Review B, 2009, 79(21): doi: 10.1103/PhysRevB.79.214201. |
23 | RAN Y, ZOU Z, LIU B, et al. Towards prediction of ordered phases in rechargeable battery chemistry via group-subgroup transformation[J]. npj Computational Materials, 2021, 7: 1-11. |
24 | OZAWA K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system[J]. Solid State Ionics, 1994, 69(3/4): 212-221. |
25 | KIM J H, MYUNG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4- δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914. |
26 | WU H, PI J C, LIU Q, et al. All-inorganic lead free double perovskite Li-battery anode material hosting high Li+ ion concentrations[J]. The Journal of Physical Chemistry Letters, 2021, 12(17): 4125-4129. |
27 | HUANG X. Advances in Li-ion batteries and related materials[J]. Advances in Materials in China, 2010, 29(8): 46-52. |
28 | GEYER C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992, 7(4): 473-483. |
29 | DARLING R, NEWMAN J. Dynamic Monte Carlo simulations of diffusion in LiyMn2O4[J]. Journal of the Electrochemical Society, 1999, 146(10): 3765-3772. |
30 | SHIMIZU A, TACHIKAWA H. Dynamics behavior of lithium in graphite lattice: MD calculation approach[J]. Journal of Physics and Chemistry of Solids, 2000, 61(12): 1895-1899. |
31 | DUANE S, KENNEDY A D, PENDLETON B J, et al. Hybrid Monte Carlo[J]. Physics Letters B, 1987, 195(2): 216-222. |
32 | HARDY J, DE PAZZIS O, POMEAU Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions[J]. Physical Review A, 1976, 13(5): 1949-1961. |
33 | CARLO C M. Markov chain Monte Carlo and Gibbs sampling[R]. Lecture notes for EEB, 2004, 581. |
34 | METROPOLIS N, ULAM S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341. |
35 | BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1): 1-43. |
36 | ZSIGMOND G, LIEUTENANT K, MEZEI F. Monte Carlo simulations of neutron scattering instruments by VITESS: Virtual instrumentation tool for ESS[J]. Neutron News, 2002, 13(4): 11-14. |
37 | FRANCIS Z, INCERTI S, ZEIN S A, et al. Monte Carlo simulation of SARS-CoV-2 radiation-induced inactivation for vaccine development[J]. Radiation Research, 2021, 195(3): 221-229. |
38 | TURCHIN V F. On the computation of multidimensional integrals by the Monte-Carlo method[J]. Theory of Probability & Its Applications, 1971, 16(4): 720-724. |
39 | YANG Z P, MING J, QIU C X, et al. A multigrid multilevel Monte Carlo method for stokes-darcy model with random hydraulic conductivity and beavers-Joseph condition[J]. Journal of Scientific Computing, 2022, 90(2): 1-30. |
40 | BENES N E, BOUWMEESTER H J M, VERWEIJ H. Multi-component lattice gas diffusion[J]. Chemical Engineering Science, 2002, 57(14): 2673-2678. |
41 | BROOKS S, GELMAN A, JONES G, et al. Handbook of Markov chain Monte Carlo[M]. Florida: CRC Press, 2011. |
42 | CHENG J R, YUAN X H, ZHAO L, et al. GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays[J]. Carbon, 2004, 42(10): 2019-2024. |
43 | COSOLI P, FERRONE M, PRICL S, et al. Hydrogen sulphide removal from biogas by zeolite adsorption: Part I. GCMC molecular simulations[J]. Chemical Engineering Journal, 2008, 145(1): 86-92. |
44 | DO D D, DO H D. Pore characterization of carbonaceous materials by DFT and GCMC simulations: A review[J]. Adsorption Science & Technology, 2003, 21(5): 389-423. |
45 | GAVILÁN-ARRIAZU E M, PINTO O A, LÓPEZ M B, et al. The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system[J]. Electrochemistry Communications, 2018, 93: 133-137. |
46 | DER V A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Physical Review B, 2001, 64(18): doi: 10.1103/PhysRevB.64.184307. |
47 | METHEKAR R N, NORTHROP P W, CHEN K J, et al. Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: Passive layer formation[C]//Proceedings of the 2011 American Control Conference, 2011: 1512-1517. |
48 | AKKERMANS R L, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164. |
49 | CHATTERJEE A, VLACHOS D G. An overview of spatial microscopic and accelerated kinetic Monte Carlo methods[J]. Journal of Computer-Aided Materials Design, 2007, 14(2): 253-308. |
50 | FRISCH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the navier-stokes equation[J]. Physical Review Letters, 1986, 56(14): 1505-1508. |
51 | LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522. |
52 | WANG W, CHEN D D, LYU D, et al. Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure[J]. Journal of Physics and Chemistry of Solids, 2017, 108: 39-51. |
53 | MAAZI N, BOULECHFAR R. A modified grain growth Monte Carlo algorithm for increased calculation speed in the presence of Zener drag effect[J]. Materials Science and Engineering: B, 2019, 242: 52-62. |
54 | LONGONE P, MARTÍN Á, RAMIREZ-PASTOR A J. Lattice-gas Monte Carlo study of sI clathrate hydrates of ethylene: Stability analysis and cell distortion[J]. Fluid Phase Equilibria, 2020, 521: doi: 10.1016/j.fluid.2020.112739. |
55 | METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092. |
56 | YANG Y, WANG W, LYU D, et al. Monte Carlo study of magnetic behaviors in a quadrangle ferrimagnetic Ising nanoisland[J]. Journal of Physics and Chemistry of Solids, 2018, 120: 109-122. |
57 | GRIESHAMMER S, EISELE S. Kinetic Monte Carlo simulations for solid state ionics: Case studies with the MOCASSIN program[J]. Diffusion Foundations, 2021, 29: 117-142. |
58 | HOFFMANN M J, MATERA S, REUTER K. Kmos: A lattice kinetic Monte Carlo framework[J]. Computer Physics Communications, 2014, 185(7): 2138-2150. |
59 | XIAO P H, HENKELMAN G. Kinetic Monte Carlo study of Li intercalation in LiFePO4[J]. ACS Nano, 2018, 12(1): 844-851. |
60 | HE B, MI P H, YE A J, et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors[J]. Acta Materialia, 2021, 203: doi: 10.1016/j.actamat.2020.116490. |
61 | THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727. |
62 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): doi: 10.1039/C1EE01598B. |
63 | YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): doi: 10.1149/1.1348257. |
64 | HIN C. Kinetic Monte Carlo simulations of anisotropic lithium intercalation into LixFePO4 electrode nanocrystals[J]. Advanced Functional Materials, 2011, 21(13): 2477-2487. |
65 | ZHENG T, DAHN J R. Lattice-gas model to understand voltage profiles of LiNixMn2– xO4/Lielectrochemical cells[J]. Physical Review B, 1997, 56(7): 3800-3805. |
66 | PERSSON K, HINUMA Y, MENG Y S, et al. Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations[J]. Physical Review B, 2010, 82(12): doi: 10.1103/PhysRevB.82.125416. |
67 | OUYANG C Y, SHI S Q, WANG Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics: Condensed Matterial, 2004, 16(13): 2265-2272. |
68 | KUMAR P P, YASHONATH S. Ionic conduction in the solid state[J]. Journal of Chemical Sciences, 2006, 118(1): 135-154. |
69 | HUANG C M, JOANNE C L, PATNAIK B S V, et al. Monte Carlo simulation of grain growth in polycrystalline materials[J]. Applied Surface Science, 2006, 252(11): 3997-4002. |
70 | KOTRLA M. Numerical simulations in the theory of crystal growth[J]. Computer Physics Communications, 1996, 97(1/2): 82-100. |
71 | BARAI P, FENG Z G, KONDO H, et al. Multiscale computational model for particle size evolution during coprecipitation of Li-ion battery cathode precursors[J]. The Journal of Physical Chemistry B, 2019, 123(15): 3291-3303. |
72 | CHEN X J, ZHAO H, AI W S. Study on the competitive growth mechanism of SiC polytypes using Kinetic Monte Carlo method[J]. Journal of Crystal Growth, 2021, 559: doi: 10.1016/j.jcrysgro. 2021.126042. |
73 | HAO F, LIU Z X, BALBUENA P B, et al. Mesoscale elucidation of solid electrolyte interphase layer formation in Li-ion battery anode[J]. The Journal of Physical Chemistry C, 2017, 121(47): 26233-26240. |
74 | HUANG J, ZHONG P, HA Y, et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials[J]. Nature Energy, 2021, 6(7): 706-714. |
75 | SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): doi: 10.1088/1674-1056/25/1/018212. |
[1] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[2] | Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase [J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. |
[3] | Jundong DUAN, Gaoshang LI, Yishi LI, Ziheng FU, Hongye HUANG. Coordinated charging control for EV charging stations considering wind power accommodation [J]. Energy Storage Science and Technology, 2021, 10(2): 630-637. |
[4] | YAO Qingcheng, YUAN Xiaoling. Optimal configuration of independent microgrid based on Monte Carlo processing of source and load uncertainty [J]. Energy Storage Science and Technology, 2020, 9(1): 186-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||