Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1865-1873.doi: 10.19799/j.cnki.2095-4239.2022.0174
Previous Articles Next Articles
HAN Junwei1,2,6(), XIAO Jing1,3,6, TAO Ying1,3, KONG Debin4,6, LV Wei2, YANG Quanhong1,3,5,6()
Received:
2022-03-30
Revised:
2022-04-27
Online:
2022-06-05
Published:
2022-06-13
Contact:
YANG Quanhong
E-mail:hardway@tju.edu.cn;qhyangcn@tju.edu.cn
CLC Number:
HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications[J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873.
Fig. 1
(a) The happiness index of rechargeable batteries is improved by addressing the five anxieties; (b) Schematic of compact energy storage: this process is like the expansion-burst process of corn to popcorn (nanosizing) and the subsequent production of ship bread, giving sufficient energy supplyin a small volume"
Fig. 2
Dense yet porous carbons produced by capillary shrinkage of graphene hydrogel. (a) Schematic of the fabrication process; (b) Schematic of the capillary shrinkage process; (c) Comparison with the graphite and porous carbon materials; (d) XRD pattern of this carbon; (e) High-resolution TEM image of this carbon[17-18]"
Fig. 3
Sulfur template for the carbon cage tailor towards high volumetric lithium storage. (a) Schematic of the void space preservation by flowable sulfur template; (b) TEM image of sulfur and tin oxide; (c) TEM image of tin oxide encapsulated by graphene cage; (d) The volumetric performance and cyclic stability"
1 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013. |
2 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
3 | ZHANG C, LV W, TAO Y, et al. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403. |
4 | HAN J W, LI H, YANG Q H. Compact energy storage enabled by graphenes: Challenges, strategies and progress[J]. Materials Today, 2021, 51: 552-565. |
5 | LUO F, LIU B N, ZHENG J Y, et al. Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2509-A2528. |
6 | 张辰, 刘东海, 吕伟, 等. 高体积能量密度锂硫电池的构建: 材料和电极[J]. 储能科学与技术, 2017, 6(3): 550-556. |
ZHANG C, LIU D H, LV W, et al. Construction of Li-S battery with high volumetric performance: Materials and electrode[J]. Energy Storage Science and Technology, 2017, 6(3): 550-556. | |
7 | 陶莹, 李欢, 杨全红. 致密储能—石墨烯用于超级电容器的机遇和展望[J]. 储能科学与技术, 2016, 5(6): 781-787. |
TAO Y, LI H, YANG Q H. Compact energy storage: Opportunities and challenges of graphene for supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 781-787. | |
8 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
9 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071. |
10 | WANG J Y, LIAO L, LI Y Z, et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries[J]. Nano Letters, 2018, 18(11): 7060-7065. |
11 | HAN J W, KONG D B, LV W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9: 402. |
12 | XUE W J, SHI Z, SUO L M, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
13 | WANG J Y, CUI Y. Electrolytes for microsized silicon[J]. Nature Energy, 2020, 5(5): 361-362. |
14 | PARK S H, KING P J, TIAN R Y, et al. High areal capacity battery electrodes enabled by segregated nanotube networks[J]. Nature Energy, 2019, 4(7): 560-567. |
15 | HAN J W, LI H, KONG D B, et al. Realizing high volumetric lithium storage by compact and mechanically stable anode designs[J]. ACS Energy Letters, 2020, 5(6): 1986-1995. |
16 | LV W, LI Z J, DENG Y Q, et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials, 2016, 2: 107-138. |
17 | TAO Y, XIE X Y, LV W, et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3: 2975. |
18 | QI C S, LUO C, TAO Y, et al. Capillary shrinkage of graphene oxide hydrogels[J]. Science China Materials, 2020, 63(10): 1870-1877. |
19 | XU Y, TAO Y, ZHENG X Y, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F·cm-3[J]. Advanced Materials, 2015, 27(48): 8082-8087. |
20 | LI H, TAO Y, ZHENG X Y, et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science, 2016, 9(10): 3135-3142. |
21 | HONG L. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters, 1999, 2(11): 547. |
22 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. |
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
23 | XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): doi: 10.1002/aenm.201601481. |
24 | LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1: 15029. |
25 | 周琳, 杨佯, 胡勇胜. 合金电极失效机制:体积膨胀?电解液分解?[J]. 储能科学与技术, 2021, 10(3): 813-820. |
ZHOU L, YANG Y, HU Y S. Failure mechanism of alloy electrodes: Volume change? decomposition of electrolyte?[J]. Energy Storage Science and Technology, 2021, 10(3): 813-820. | |
26 | CHEN F Q, HAN J W, KONG D B, et al. 1000 Wh·L-1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes[J]. National Science Review, 2021, 8(9): doi: 10.1093/nsr/nwab012. |
27 | HAN J W, ZHANG C, KONG D B, et al. Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage[J]. Nano Energy, 2020, 72: doi: 10.1016/j.nanoen.2020.104729. |
28 | MA H Y, GENG H Y, YAO B W, et al. Highly ordered graphene solid: An efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability[J]. ACS Nano, 2019, 13(8): 9161-9170. |
29 | LIU Y T, LIU S, LI G R, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(8): doi: 10.1002/adma.202003955. |
30 | ZHANG C, LIU D H, LV W, et al. A high-density graphene-sulfur assembly: A promising cathode for compact Li-S batteries[J]. Nanoscale, 2015, 7(13): 5592-5597. |
31 | LI H, TAO Y, ZHANG C, et al. Dense graphene monolith for high volumetric energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201703438. |
32 | PAN H L, CHEN J Z, CAO R G, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth[J]. Nature Energy, 2017, 2(10): 813-820. |
33 | LIAO Y Q, YUAN L X, XIANG J W, et al. Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode[J]. Nano Energy, 2020, 69: doi: 10.1016/j.nanoen.2020.104471. |
34 | CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. |
35 | BOLES S T, TAHMASEBI M H. Are foils the future of anodes?[J]. Joule, 2020, 4(7): 1342-1346. |
36 | HELIGMAN B T, KREDER K J III, MANTHIRAM A. Zn-Sn interdigitated eutectic alloy anodes with high volumetric capacity for lithium-ion batteries[J]. Joule, 2019, 3(4): 1051-1063. |
37 | ZHOU T H, LYU W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017, 10 (7): 1694-1703. |
38 | GRIFFITH K J, WIADEREK K M, CIBIN G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage[J]. Nature, 2018, 559(7715): 556-563. |
39 | NIU C J, LEE H, CHEN S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559. |
40 | ZHU Z, YU D W, SHI Z, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh·L-1[J]. Energy & Environmental Science, 2020, 13(6): 1865-1878. |
41 | ZHANG J N, LI Q H, OUYANG C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[3] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[4] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[5] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[6] | Junwei WANG, Yi REN, Zun GUO, Yan ZHANG. Optimal scheduling of integrated energy system considering integrated demand response and reward and punishment ladder carbon trading [J]. Energy Storage Science and Technology, 2022, 11(7): 2177-2187. |
[7] | Guanghua WU, Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation [J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212. |
[8] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[11] | ZHANG Hong, ZHANG Yang, ZHAO Yao, WANG Jiulin. Research progress of sulfur cathode in solid-solid conversion reaction [J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933. |
[12] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[13] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[14] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[15] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||