Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1947-1956.doi: 10.19799/j.cnki.2095-4239.2022.0025
Previous Articles Next Articles
XIE Chenglu1(), HUANG Xiankun1,2(), KANG Lixia1,2, LIU Yongzhong1,2()
Received:
2022-01-13
Revised:
2022-01-28
Online:
2022-06-05
Published:
2022-06-13
Contact:
HUANG Xiankun, LIU Yongzhong
E-mail:xcllll@stu.xjtu.edu.cn;xkhuang@mail.xjtu.edu.cn;yzliu@mail.xjtu.edu.cn
CLC Number:
XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia[J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956.
Table 1
Ammonia yield and Faradaic efficiency of catalysts for electrochemical ammonia synthesis"
催化剂 | 电解质 | 氨产率 | 法拉第效率/% | 参考文献 |
---|---|---|---|---|
0.025-Ruc/CNT | 0.1 mol/L HCl | 10.98 μg/(h·mgcat.) | 2.18 | 本工作 |
Ru NPs | 0.01 mol/L HCl | 5.50 μg/(h·mgcat.) | 1.50 | [ |
(2D) β-boron | 0.1 mol/L HCl | 3.12 μg/(h·mgcat.) | 4.84 | [ |
N-doped Porous Carbon | 0.1 mol/L HCl | 7.22 μg/(h·mgcat.) | 7.42 | [ |
Fe2(MoO4)3 | 0.1 mol/L Na2SO4 | 7.50 μg/(h·mgcat.) | 1.00 | [ |
Ce1/3NbO3 | 0.1 mol/L Na2SO4 | 10.34 μg/(h·cm2) | 6.87 | [ |
doped LaFeO3 perovskite | 2.0 mol/L KOH | 13.46 μg/(h·mgcat.) | 1.99 | [ |
1 | YANG B, DING W L, ZHANG H H, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2): 672-687. |
2 | YAO Y, WANG J, SHAHID U B, et al. Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges[J]. Electrochemical Energy Reviews, 2020, 3(2): 239-270. |
3 | KYRIAKOU V, GARAGOUNIS I, VASILEIOU E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13. |
4 | QING G, GHAZFAR R, JACKOWSKI S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia[J]. Chemical Reviews, 2020, 120(12): 5437-5516. |
5 | GUO D X, WANG S, XU J, et al. Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions[J]. Journal of Energy Chemistry, 2022, 65: 448-468. |
6 | CAO N, ZHENG G F. Aqueous electrocatalytic N2 reduction under ambient conditions[J]. Nano Research, 2018, 11(6): 2992-3008. |
7 | 练文超, 雷励斌, 梁波, 等. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
LIAN W C, LEI L B, LIANG B, et al. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices[J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. | |
8 | WANG Z Q, LI Y H, YU H J, et al. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures[J]. ChemSusChem, 2018, 11(19): 3480-3485. |
9 | CHEN C, LIANG C, XU J, et al. Size-dependent electrochemical nitrogen reduction catalyzed by monodisperse Au nanoparticles[J]. Electrochimica Acta, 2020, 335:doi:10.1016/j.electacta.2020.135708. |
10 | HUANG H H, XIA L, SHI X F, et al. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Chemical Communications (Cambridge, England), 2018, 54(81): 11427-11430. |
11 | ZHANG W Q, YANG L T, AN C H, et al. Enhancing electrochemical nitrogen reduction with Ru nanowires via the atomic decoration of Pt[J]. Journal of Materials Chemistry A, 2020, 8(47): 25142-25147. |
12 | SIM H Y F, CHEN J R T, KOH C S L, et al. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59(39): 16997-17003. |
13 | WANG H Y, CHEN Y Z, FAN R X, et al. Selective electrochemical reduction of nitrogen to ammonia by adjusting the three-phase interface[J]. Research (Washington, D C), 2019, 2019:doi:10.34133/2019/1401209. |
14 | YANG C Y, HUANG B L, BAI S X, et al. A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals[J]. Advanced Materials, 2020, 32(24):doi:10.1002/adma.2001267. |
15 | LIN Y X, ZHANG S N, XUE Z H, et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles[J]. Nature Communications, 2019, 10: 4380. |
16 | LI C, ZHANG S B, DING Z H, et al. Copper nanocrystals anchored on an O-rich carbonized corn gel for nitrogen electroreduction to ammonia[J]. Inorganic Chemistry Frontiers, 2020, 7(19): 3555-3560. |
17 | LIU A M, LIANG X Y, YANG Q Y, et al. Metal-organic-framework-derived cobalt-doped carbon material for electrochemical ammonia synthesis under ambient conditions[J]. ChemElectroChem, 2020, 7(24): 4900-4905. |
18 | SKÚLASON E, BLIGAARD T, GUDMUNDSDÓTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(3): 1235-1245. |
19 | AHMED M I, LIU C W, ZHAO Y, et al. Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction[J]. Angewandte Chemie, 2020, 132(48): 21649-21653. |
20 | SURYANTO B H R, WANG D B, AZOFRA L M, et al. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia[J]. ACS Energy Letters, 2019, 4(2): 430-435. |
21 | LIU A M, GAO M F, REN X F, et al. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale, 2020, 12(20): 10933-10938. |
22 | SINGH A R, ROHR B A, STATT M J, et al. Strategies toward selective electrochemical ammonia synthesis[J]. ACS Catalysis, 2019, 9(9): 8316-8324. |
23 | GENG Z G, LIU Y, KONG X D, et al. Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40):doi:10.1022/adma.20181803498. |
24 | YU B, LI H, WHITE J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion[J]. Advanced Functional Materials, 2020, 30(6):doi:10.1002/adfm.201905665. |
25 | TAO H C, CHOI C, DING L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
26 | ZHANG Y, ZHANG Q, LIU D X, et al. High spin polarization ultrafine Rh nanoparticles on CNT for efficient electrochemical N2 fixation to ammonia[J]. Applied Catalysis B: Environmental, 2021, 298:doi:10.1016/j.apcatb.2021.120592. |
27 | 赵悠曼, 严小波, 段红坤, 等. 碳纳米管导电剂对硅碳负极锂电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1): 118-127. |
ZHAO Y M, YAN X B, DUAN H K, et al. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB[J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. | |
28 | CHEN S M, PERATHONER S, AMPELLI C, et al. Direct synthesis of ammonia from N2 and H2O on different iron species supported on carbon nanotubes using a gas-phase electrocatalytic flow reactor[J]. ChemElectroChem, 2020, 7(14): 3028-3037. |
29 | WEN J, CHANG H H, HUANG T, et al. A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation[J]. Electrochimica Acta, 2021, 367:doi:10.1016/j.electacta.2020.137421. |
30 | ZHAO X, YANG Z Q, KUKLIN A V, et al. Efficient ambient electrocatalytic ammonia synthesis by nanogold triggered via boron clusters combined with carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42821-42831. |
31 | ROSSETTI I, FORNI L. Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis[J]. Applied Catalysis A: General, 2005, 282(1/2): 315-320. |
32 | BOCK C, PAQUET C, COUILLARD M, et al. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. Journal of the American Chemical Society, 2004, 126(25): 8028-8037. |
33 | WANG D B, AZOFRA L M, HARB M, et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J]. ChemSusChem, 2018, 11(19): 3356. |
34 | FAN Q, CHOI C, YAN C, et al. High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction[J]. Chemical Communications (Cambridge, England), 2019, 55(29): 4246-4249. |
35 | HU C, LIANG S C, BAI S L, et al. Silica-assisted fabrication of N-doped porous carbon for efficient electrocatalytic nitrogen fixation[J]. ChemCatChem, 2020, 12(13): 3453-3458. |
36 | CHEN C, LIU Y, YAO Y. Ammonia synthesis via electrochemical nitrogen reduction reaction on iron molybdate under ambient conditions[J]. European Journal of Inorganic Chemistry, 2020, 2020(34): 3236-3241. |
37 | HU X M, SUN Y T, GUO S Y, et al. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions[J]. Applied Catalysis B: Environmental, 2021, 280:doi:10.1016/j.apcatb.2020.119419. |
38 | ZHANG S, DUAN G Y, QIAO L L, et al. Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8935-8939. |
[1] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[2] | Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution [J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. |
[3] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[4] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[5] | Linhui JIA, Zejia GAI, Moxi LI, Huagen LIANG. Research progress of MOFs and their derivatives as cathode catalysts for Li-O2 batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 503-510. |
[6] | Yanping WEI, Jun WANG, Nanfan LI, Changli SHI. Grid-connected switch control strategy suitable for energy storage converter in microgrid [J]. Energy Storage Science and Technology, 2022, 11(1): 156-163. |
[7] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[8] | Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes [J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905. |
[9] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[10] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[11] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[12] | Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers [J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155. |
[13] | Shenzhi ZHANG, Likai WANG, Yinggang SUN, Heng LÜ, Ziyin YANG, Leilei LI, Zhongfang LI. Construction of two dimensional carbon-supported Au4Pd2 catalysts and their electrocatalytic performances [J]. Energy Storage Science and Technology, 2021, 10(6): 2028-2038. |
[14] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[15] | Zheng LI, Zhen LIU, Huawei WU, Dongsheng XIE, Wei QIAN. The transient flow field characteristics of tangential leakage in scroll compressor [J]. Energy Storage Science and Technology, 2021, 10(5): 1579-1588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||