Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2891-2899.doi: 10.19799/j.cnki.2095-4239.2022.0324
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Yulei LI1,2(), Wei LIU2, Binqi DONG2, Dingguo XIA1()
Received:
2022-06-15
Revised:
2022-07-09
Online:
2022-09-05
Published:
2022-08-30
Contact:
Dingguo XIA
E-mail:11665209@ceic.com;dgxia@pku.edu.cn
CLC Number:
Yulei LI, Wei LIU, Binqi DONG, Dingguo XIA. Green hydrogen ammonia synthesis in China under double carbon target:Research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899.
1 | 凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83. |
LING W, LIU W, LI Y L, et al. Development strategy of hydrogen infrastructure industry in China[J]. Strategic Study of CAE, 2019, 21(3): 76-83. | |
2 | AGENCY I E. Global hydrogen review 2021R]. 2021. |
3 | Hydrogen Council, McKinsey Company. Hydrogen insights report 2021[R]. Belgium: Hydrogen Council, McKinsey & Company, 2021. |
4 | KYRIAKOU V, GARAGOUNIS I, VOURROS A, et al. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158. |
5 | International Renewable Energy Agency. Reaching zero with renewables: Eliminating CO2 emissions from industry and transport in line with the 1.5 oC climate goal[R]. Abu Dhabi: International Renewable Energy Agency, 2020. |
6 | International energy agency. Net Zero by 2050[R]. France: International Energy Agency, 2021. |
7 | AGENCY I E. Ammonia Technology Roadmap[R]. 2021. |
8 | 新能源网.美国能源部支持新的绿色氨技术突破[EB/OL]. (2021-11-29) [2020-12-01]. http://www.china-nengyuan.com/news/164028.html. |
9 | AGENCY I E. Hydrogen in Latin America[R]. 2021. |
10 | International Energy Agency. Hydrogen in North-Western Europe[R]. 2021. |
11 | 中国能源报.日本更新《2050碳中和绿色增长战略》[EB/OL]. (2020-12-25) [2021-08-07]. https://baijiahao.baidu.com/s?id=1707421638747517128&wfr=spider&for=pc. |
China Energy News. Japan has issued《The strategy of low carbon development to 2050》[EB/OL]. (2020-12-25) [2021-08-07]. https://baijiahao.baidu.com/s?id=1707421638747517128&wfr=spider&for=pc. | |
12 | 中国化工报.气头氮肥、甲醇迎来新的发展机遇[EB/OL]. (2021-03-02) [2022-01-06]. http://www.ccin.com.cn/detail/efb2d8d400f023a9664b2285a8a480b4. |
13 | 顾宗勤, 苏建英. 氮肥甲醇产业应勇担减碳重任[J]. 中国石油和化工产业观察, 2021(8): 30-31. |
14 | 中化新网. 2020年氮肥行业合成氨产量、尿素产量、利润总额20强公布[EB/OL]. (2021-05-27) [2021-05-27]. http://www.ccin.com.cn/detail/445045b693b30e851cef9c5c2976393a. |
15 | 能源转型委员会. 中国2050:一个全面实现现代化国家的零碳景图[R]. 北京: 能源转型委员会, 2021. |
16 | ARORA P, SHARMA I, HOADLEY A, et al. Remote, small-scale, 'greener' routes of ammonia production[J]. Journal of Cleaner Production, 2018, 199: 177-192. |
17 | 中华人民共和国工业信息化部. 合成氨行业能效“领跑者”实践经验[EB/OL]. (2021-03-02) [2021-03-02]. https://www.miit.gov.cn/jgsj/jns/gzdt/art/2021/art_4fdc15363bc342a79f27c4a6227dde6d.html. |
18 | 国家能源局新闻发言人. 国家能源局召开发布会介绍2021年一季度我国能源形势等有关情况并答问[EB/OL]. (2021-01-28) [2022-01-29] http://www.gov.cn/xinwen/2021-04/30/content_5604055.htm. |
19 | 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14. |
SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. | |
20 | 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. |
SHU Y B, CHEN G P, HE J B, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. | |
21 | SALMON N, BAÑARES-ALCÁNTARA R, NAYAK-LUKE R. Optimization of green ammonia distribution systems for intercontinental energy transport[J]. iScience, 2021, 24(8): 102903. |
22 | HAO Derek, WEI Yunxia, MAO Liang, et al. Boosted selective catalytic nitrate reduction to ammonia on carbon/bismuth/bismuth oxide photocatalysts[J]. Journal of Cleaner Production, 2022, 331: 1-7. |
23 | ZHAO X, JIA X X, ZHANG H B, et al. Atom-dispersed copper and nano-palladium in the boron-carbon-nitrogen matric cooperate to realize the efficient purification of nitrate wastewater and the electrochemical synthesis of ammonia[J]. Journal of Hazardous Materials, 2022, 434: 128909. |
24 | LIU X L, SHEN Z R, PENG X Y, et al. A photo-assisted electrochemical-based demonstrator for green ammonia synthesis[J]. Journal of Energy Chemistry, 2022, 68: 826-834. |
25 | 顾红宾. 《中国可再生能源发展报告2020》[R]. 苏州: 水电水利规划设计总院, 2021. |
GU Hongbin. China renewable energy and development report 2020[R]. Suzhou: China Renewable Energy Engineering Institute, 2021. | |
26 | WANG L, XIA M K, WANG H, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. |
27 | 刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022(1): 32-45. |
LIU H Y, WANG H H, XU J H. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen[J]. CIESC Journal, 2022(1): 32-45. | |
28 | WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1): 2870. |
29 | LEE B, LIM D, LEE H, et al. Which water electrolysis technology is appropriate? : Critical insights of potential water electrolysis for green ammonia production[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110963. |
30 | QI M, KIM M, DAT VO N, et al. Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage[J]. Applied Energy, 2022, 314: 118965. |
31 | ARNAIZ DEL POZO C, CLOETE S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future[J]. Energy Conversion and Management, 2022, 255: 115312. |
32 | FASIHI M, WEISS R, SAVOLAINEN J, et al. Global potential of green ammonia based on hybrid PV-wind power plants[J]. Applied Energy, 2021, 294: 116170. |
33 | LUO Y, LIAO S T, CHEN S, et al. Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation[J]. Applied Energy, 2022, 307: 118158. |
34 | MAKHLOUFI C, KEZIBRI N. Large-scale decomposition of green ammonia for pure hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34777-34787. |
35 | 国家发展改革委, 国家能源局. “十四五”现代能源体系规划[R/OL]. (2022-1-29) [2022-03-22]. |
36 | 国家能源局, 科学技术部. “十四五”能源领域科技创新规划[R/OL]. (2021-11-29) [2022-04-03] http://www.gov.cn/zhengce/zhengceku/2022-04/03/content_5683361.htm. |
37 | 国家发展改革委, 国家能源局. “十四五”新型储能发展实施方案[R/OL]. (2022-2-10) [2022-03-21]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202203/t20220321_1319772.html?code=&state=123. |
38 | 国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[R/OL]. (2022-3-23) [2022-03-23]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html?code=&state=123. |
[1] | Xu HU, Han JIANG, Rui ZHANG. Energy transition and hydrogen development prospects in Saudi Arabia [J]. Energy Storage Science and Technology, 2022, 11(7): 2354-2365. |
[2] | Jian LIU. Economic assessment for energy storage technologies adaptive to variable renewable energy [J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. |
[3] | Jianjun CAO, Jun WANG, Liyong ZHANG, Yaqi LIU, Haoshu LING, Liang WANG, Yujie XU, Xuezhi ZHOU, Haisheng CHEN. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy [J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. |
[4] | Ke LU, Haishan LI, Lin MENG. Analysis of the reduction of discard rate for renewable energy power with “Generation-Grid-Load-Storage” interactive control [J]. Energy Storage Science and Technology, 2020, 9(S1): 39-44. |
[5] | Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. |
[6] | DING Qian, ZENG Pingliang, SUN Yikai, XU Chenjing, XU Zhenchao. A planning method for the placement and sizing of distributed energy storage system considering the uncertainty of renewable energy sources [J]. Energy Storage Science and Technology, 2020, 9(1): 162-169. |
[7] | CHEN Qimei, ZHENG Chunxiao, LI Haiying. Analysis on international development trend of energy storage technology based on bibliometrics [J]. Energy Storage Science and Technology, 2020, 9(1): 296-305. |
[8] | SUN Wenwen, XU Yujie, DING Jie, LI Ruimin, LING Haoshu, TAN Yaqian, CHEN Haisheng. An energy system for the integration of renewable energy with energy storage in a frigid plateau region [J]. Energy Storage Science and Technology, 2019, 8(4): 678-688. |
[9] | LI Ruimin, ZHANG Xinjing, XU Yujie, SUN Wenwen, ZHOU Xuezhi, GUO Cong, CHEN Haisheng. Research on optimal confguration of hybrid energy storage capacity for wind-solar generation system [J]. Energy Storage Science and Technology, 2019, 8(3): 512-522. |
[10] | YANG Junfeng, ZHENG Xiaoyu, HUI Dong, YANG Shuili, LUO Weihua, WANG Hua. Energy storage for enhancing transmission capacities and trans-regional reserves of a UHV AC/DC power grid [J]. Energy Storage Science and Technology, 2019, 8(2): 399-407. |
[11] | SU Wei, ZHANG Yi'chi, WEI Zengfu, XU Kaiqi, ZHONG Guobin. Advise on policy formulation of energy storage industry for the development [J]. Energy Storage Science and Technology, 2018, 7(S1): 26-33. |
[12] | YANG Junfeng, ZHENG Xiaoyu, HUI Dong, YANG Shuili, LUO Weihua, LI Xiaofei. Capacity demand analysis of energy storage in the sending-side of a power grid for accommodating large-scale renewables [J]. Energy Storage Science and Technology, 2018, 7(4): 698-704. |
[13] | CAO Yi1, WANG Yonggang2, WANG Qing1, ZHANG Zhaoyong1, CHE Yong1, XIA Yongyao2, DAI Xiang1. Development of aqueous sodium ion battery [J]. Energy Storage Science and Technology, 2016, 5(3): 317-324. |
[14] | HUO Xianxu, WANG Jing, JIANG Ling, XU Qingshan. Review on key technologies and applications of hydrogen energy storage system [J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. |
[15] | SONG Pengxiang, ZHAO Bo, YANG Cenyu, WANG Le, JIN Yi, YANG Shihui. An assessment of the use of fuel chemicals synthesized from captured carbon dioxide for renewable electricity storage [J]. Energy Storage Science and Technology, 2016, 5(1): 78-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||