Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2921-2932.doi: 10.19799/j.cnki.2095-4239.2022.0181
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Shuya GONG1,2(), Yue WANG2, Meng LI2, Jingyi QIU2(), Hong WANG1(), Yuehua WEN2, Bin XU1
Received:
2022-03-31
Revised:
2022-05-10
Online:
2022-09-05
Published:
2022-08-30
Contact:
Jingyi QIU, Hong WANG
E-mail:sygong77@163.com;qiujingyi1202@163.com;wanghong@mail.buct.edu.cn
CLC Number:
Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932.
Fig. 3
Structural changes of Li x TiNb2O7 during Li insertion-extraction. (a) In situ XRD patterns collected during initial discharge and charge at a constant current rate of C/8 between 1.0 V and 3.0 V; (b) The unit cell volume “V” and lattice parameter “b” calculated from “Le Bail fitting” as a function of “ x ” in Li x TiNb2O7 (“ x ” is derived from the capacity obtained; open circle: during discharge; solid dot: during charge)[11]"
Table 1
Preparation method and electrochemical properties of TiNb2O7 as LIB anode"
Synthetic methods | Samples | Q/(mAh/g) | Cyclic stability | Ref |
---|---|---|---|---|
Solvothermal | TiNb2O7 | 258, 1 C | 83%, 500 cycles, 10 C | [ |
TiNb2O7 | 317, 0.1 C | 95.8%, 10000 cycles, 5 C | [ | |
TiNb2O7 | 319, 0.1 C | 83%, 500 cycles, 10 C | [ | |
V-TNO | 314.8, 0.5 C | 71.5%, 2000 cycles, 10 C | [ | |
Ag-TiNb2O7 | 273.5, 1 C | 92.3%, 100 cycles, 1 C | [ | |
WS2@TiNb2O7 | 729, 1 A/g | 83.9%, 300 cycles, 5 A/g | [ | |
Solid-state | Ru-TNO | 351, 0.1 C | 90.1%, 100 cycles, 5 C | [ |
Cu-TNO | 274, 0.5 C | 98.9%, 1000 cycles, 10 C | [ | |
Ar-TNO | 115, 1600 mA/g | 71.77%, 300 cycles, 100 mA/g | [ | |
TiNb2O7/CNT | 346, 0.1 C | 97.8%, 100 cycles, 10 C | [ | |
HTNO@C | 319.4, 0.25 C | 71%, 500 cycles, 0.25 C | [ | |
3D-TNO@C | 393.3, 0.25 C | 99%, 1000 cycles, 5 C | [ | |
TNO@TiC@NC | 344, 0.5 C | 95.5%, 200 cycles, 0.5 C | [ | |
Electrospining | TiNb2O7 | 272, 1 C | 92%, 50 cycles, 1 C | [ |
TiNb2O7-x | 440, 0.1 A/g | 92.3%, 2000 cycles, 1.0 A/g | [ |
1 | ZHOU L M, ZHANG K, HU Z, et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(6): 1701415. |
2 | 乔荣涵, 岑官骏, 申晓宇, 等. 锂电池百篇论文点评(2020.12.1—2021.1.31)[J]. 储能科学与技术, 2021, 10(2): 393-407. |
QIAO R H, CEN G J, SHEN X Y, et al. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(2): 393-407. | |
3 | DENG Q L, FU Y P, ZHU C B, et al. Niobium-based oxides toward advanced electrochemical energy storage: Recent advances and challenges[J]. Small, 2019, 15(32): 1804884. |
4 | ARAVINDAN V, SUNDARAMURTHY J, JAIN A, et al. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density[J]. ChemSusChem, 2014, 7(7): 1858-1863. |
5 | 李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, 4(3): 306-318. |
LI H. Fundamental scientific aspects of lithium ion batteries(XV)—Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-318. | |
6 | LU X, JIAN Z L, FANG Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7[J]. Energy & Environmental Science, 2011, 4(8): 2638. |
7 | 尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. |
YIN J, DONG J L, DING H, et al. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. | |
8 | HAN J T, HUANG Y H, GOODENOUGH J B. New anode framework for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(8): 2027-2029. |
9 | SARITHA D, VARADARAJU U V. Studies on electrochemical lithium insertion in isostructural titanium niobate and tantalate phases with shear ReO3 structure[J]. Materials Research Bulletin, 2013, 48(7): 2702-2706. |
10 | CAVA R J, MURPHY D W, ZAHURAK S M. Lithium insertion in wadsley-Roth phases based on niobium oxide[J]. Journal of the Electrochemical Society, 1983, 130(12): 2345-2351. |
11 | GUO B K, YU X Q, SUN X G, et al. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage[J]. Energy Environ Sci, 2014, 7(7): 2220-2226. |
12 | CHOI S H, ALI B, CHOI K S, et al. Reaction kinetics and morphological study of TiNb2O7 synthesized by solid-state reaction[J]. Archives of Metallurgy and Materials, 2017, 62(2): 1051-1056. |
13 | INADA R, KUMASAKA R, INABE S, et al. Li+ insertion/extraction properties for TiNb2O7 single particle characterized by a particle-current collector integrated microelectrode[J]. Journal of the Electrochemical Society, 2018, 166(3): A5157-A5162. |
14 | ISE K, MORIMOTO S, HARADA Y, et al. Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries[J]. Solid State Ionics, 2018, 320: 7-15. |
15 | TANG K, MU X K, VAN AKEN P A, et al. "nano-pearl-string" TiNb2O7 as anodes for rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(1): 49-53. |
16 | LI H S, SHEN L F, PANG G, et al. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries[J]. Nanoscale, 2015, 7(2): 619-624. |
17 | JO C, KIM Y, HWANG J, et al. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes[J]. Chemistry of Materials, 2014, 26(11): 3508-3514. |
18 | WANG H K, QIAN R F, CHENG Y H, et al. Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: Recent advances and future prospects[J]. Journal of Materials Chemistry A, 2020, 8(36): 18425-18463. |
19 | LIU M, DONG H C, ZHANG S, et al. Three-dimensional porous TiNb2O7/CNT-KB composite microspheres as lithium-ion battery anode material[J]. ChemElectroChem, 2019, 6(15): 3959-3965. |
20 | 孙德旺, 蒋必志, 袁涛, 等. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143. |
SUN D W, JIANG B Z, YUAN T, et al. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. | |
21 | CHENG Q S, LIANG J W, LIN N, et al. Porous TiNb2O7 nanospheres as ultra long-life and high-power anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 176: 456-462. |
22 | LIU G Y, ZHAO L F, SUN R X, et al. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life[J]. Electrochimica Acta, 2018, 259: 20-27. |
23 | SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications (Cambridge, England), 2015, 51(48): 9849-9852. |
24 | LIU K, WANG J A, YANG J, et al. Interstitial and substitutional V5+-doped TiNb2O7 microspheres: A novel doping way to achieve high-performance electrodes[J]. Chemical Engineering Journal, 2021, 407: 127190. |
25 | LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635. |
26 | YANG C, YU S, MA Y, et al. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage[J]. Journal of Power Sources, 2017, 360: 470-479. |
27 | YANG C, LIN C F, LIN S W, et al. Cu0.02Ti0.94Nb2.04O7: An advanced anode material for lithium-ion batteries of electric vehicles[J]. Journal of Power Sources, 2016, 328: 336-344. |
28 | DENG S J, ZHANG Y, XIE D, et al. Oxygen vacancy modulated Ti2Nb10O29- x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage[J]. Nano Energy, 2019, 58: 355-364. |
29 | INADA R, MORI T, KUMASAKA R, et al. Characterization of vacuum-annealed TiNb2O7 as high potential anode material for lithium-ion battery[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 264-272. |
30 | ZHANG Y P, ZHANG M Q, LIU Y Y, et al. Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries[J]. Electrochimica Acta, 2020, 330: 135299. |
31 | ZHU W Q, ZOU B B, ZHANG C H, et al. Oxygen-defective TiNb2O7- x nanochains with enlarged lattice spacing for high-rate lithium ion capacitor[J]. Advanced Materials Interfaces, 2020, 7(16): 2000705. |
32 | LIU G Y, JIN B, ZHANG R X, et al. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14807-14812. |
33 | XIE K Y, WEI W F, YU H R, et al. Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries[J]. RSC Advances, 2016, 6(42): 35746-35750. |
34 | YUAN T, SOULE L K, ZHAO B T, et al. Recent advances in titanium niobium oxide anodes for high-power lithium-ion batteries[J]. Energy & Fuels, 2020, 34(11): 13321-13334. |
35 | LIN C F, HU L, CHENG C B, et al. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage[J]. Electrochimica Acta, 2018, 260: 65-72. |
36 | LI S, CAO X, SCHMIDT C N, et al. TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(11): 4242-4251. |
37 | LYU H L, LI J L, WANG T, et al. Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications[J]. ACS Applied Energy Materials, 2020, 3(6): 5657-5665. |
38 | ZHU G Z, LI Q, CHE R C. Hollow TiNb2O7@C spheres with superior rate capability and excellent cycle performance as anode material for lithium-ion batteries[J]. Chemistry-A European Journal, 2018, 24(49): 12932-12937. |
39 | ZHU G Z, LI Q, ZHAO Y H, et al. Nanoporous TiNb2O7/C composite microspheres with three-dimensional conductive network for long-cycle-life and high-rate-capability anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41258-41264. |
40 | TIAN T, LU L L, YIN Y C, et al. Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries[J]. Advanced Functional Materials, 2021, 31(4): 2007419. |
41 | LIU G Y, LIU X D, ZHAO Y Y, et al. Synthesis of Ag-coated TiNb2O7 composites with excellent electrochemical properties for lithium-ion battery[J]. Materials Letters, 2017, 197: 38-40. |
42 | WANG G Q, WEN Z S, DU L L, et al. Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2017, 367: 106-115. |
43 | LUO J, PENG J, ZENG P, et al. Controlled fabrication and performances of single-core/dual-shell hierarchical structure m-TNO@TiC@NC anode composite for lithium-ion batteries[J]. Electrochimica Acta, 2020, 341: 136072. |
44 | YIN L H, DE PHAM-CONG, JEON I, et al. Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes[J]. Chemical Engineering Journal, 2020, 382: 122800. |
[1] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[2] | Ziying CHEN, Xiang DING, Qingsong TONG, Junyan LI, Jingyu HUANG. Application progress of doping technology in Mn-based lithium rich oxide cathode materials [J]. Energy Storage Science and Technology, 2022, 11(8): 2681-2690. |
[3] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[4] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[7] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[8] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[9] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[10] | Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification [J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. |
[11] | Yuyang LIU, Shunli WANG, Yanxin XIE, Weikang JI, Yixing ZHANG. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model [J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. |
[12] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[13] | Al-jawfi IBRAHIM, Jiaqi ZHAO, Meng SHI, Xiaohong KANG. High electrochemical stability of Al-doped spinel LiMn2O4 cathode material for aqueous lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1330-1337. |
[14] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[15] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||