Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 227-235.doi: 10.19799/j.cnki.2095-4239.2022.0450
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zhihao ZHANG(), Xiaogang JIN, Hengxing BAO, Xiang LING()
Received:
2022-08-15
Revised:
2022-08-22
Online:
2023-01-05
Published:
2023-02-08
Contact:
Xiang LING
E-mail:zzh_27315@163.com;xling@njtech.edu.cn
CLC Number:
Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor[J]. Energy Storage Science and Technology, 2023, 12(1): 227-235.
1 | UCHINO T, FUSHIMI C. Fluidized bed reactor for thermochemical heat storage using Ca(OH)2/CaO to absorb the fluctuations of electric power supplied by variable renewable energy sources: A dynamic model[J]. Chemical Engineering Journal, 2021, 419: doi: 10.1016/j.cej.2021.129571. |
2 | HOLTTINEN H. Impact of hourly wind power variations on the system operation in the Nordic countries[J]. Wind Energy, 2005, 8(2): 197-218. |
3 | XIAO S N, PRADITIA T, OLADYSHKIN S, et al. Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2021.116456. |
4 | ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
5 | KHAN M M A, IBRAHIM N I, MAHBUBUL I M, et al. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review[J]. Solar Energy, 2018, 166: 334-350. |
6 | CHEN X Y, ZHANG Z, QI C G, et al. State of the art on the high-temperature thermochemical energy storage systems[J]. Energy Conversion and Management, 2018, 177: 792-815. |
7 | DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): doi: 10.1126/science.aas9793. |
8 | SCHAUBE F, KOCH L, WÖRNER A, et al. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20. |
9 | ANGERER M, BECKER M, HÄRZSCHEL S, et al. Design of a MW-scale thermo-chemical energy storage reactor[J]. Energy Reports, 2018, 4: 507-519. |
10 | SEITZ G, MOHAMMADI F, CLASS H. Thermochemical heat storage in a lab-scale indirectly operated CaO/Ca(OH)2 reactor—numerical modeling and model validation through inverse parameter estimation[J]. Applied Sciences, 2021, 11(2): 682. |
11 | PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. |
12 | CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. |
13 | ERVIN G. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61. |
14 | CRIADO Y A, ALONSO M, ABANADES J C. Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storage applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12594-12601. |
15 | SAKELLARIOU K G, KARAGIANNAKISY G, CRIADO Y A. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122: 215-230. |
16 | ÁLVAREZ CRIADO Y, ALONSO M, ABANADES J C. Composite material for thermochemical energy storage using CaO/Ca(OH)2[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9314-9327. |
17 | CRIADO Y A. Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage[J]. Solar Energy, 2016, 135: 800-809. |
18 | KARIYA J, RYU J, KATO Y. Development of thermal storage material using vermiculite and calcium hydroxide[J]. Applied Thermal Engineering, 2016, 94: 186-192. |
19 | YAN J, ZHAO C Y. First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping[J]. Chemical Engineering Science, 2014, 117: 293-300. |
20 | YAN J, ZHAO C Y. Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138: 86-92. |
21 | AFFLERBACH S, KAPPES M, GIPPERICH A, et al. Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions[J]. Solar Energy, 2017, 148: 1-11. |
22 | ROßKOPF C, HAAS M, FAIK A, et al. Improving powder bed properties for thermochemical storage by adding nanoparticles[J]. Energy Conversion and Management, 2014, 86: 93-98. |
23 | ROßKOPF C, AFFLERBACH S, SCHMIDT M, et al. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J]. Energy Conversion and Management, 2015, 97: 94-102. |
24 | PAN Z H. Gas-solid thermochemical heat storage reactors for high-temperature applications[J]. Energy, 2017, 130: 155-173. |
25 | SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: Experimental results[J]. Chemical Engineering Research and Design, 2013, 91(5): 856-864. |
26 | SCHMIDT M, SZCZUKOWSKI C, ROßKOPF C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559. |
27 | SCHMIDT M, GUTIERREZ A, LINDER M. Thermochemical energy storage with CaO/Ca(OH)2-Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor[J]. Applied Energy, 2017, 188: 672-681. |
28 | YAN J, ZHAO C Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175: 277-284. |
29 | AZPIAZU M N, MORQUILLAS J M, VAZQUEZ A. Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle[J]. Applied Thermal Engineering, 2003, 23(6): 733-741. |
30 | SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873. |
31 | PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107: 605-616. |
32 | CRIADO Y A, ALONSO M, ABANADES J C, et al. Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors[J]. Applied Thermal Engineering, 2014, 73(1): 1087-1094. |
33 | CRIADO Y A, HUILLE A, ROUGÉ S, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2017, 313: 1194-1205. |
34 | PRASAD J S, MUTHUKUMAR P, DESAI F, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: doi:10.1016/j.apenergy. 2019.113733. |
35 | CHEN X Y, JIN X G, ZHANG Z H, et al. Experimental investigation of CaCO3/CaO in a spiral coil reactor for thermochemical energy storage[J]. Chemical Engineering Journal, 2022, 428: 131971. |
36 | SCHAUBE F, WÖRNER A, TAMME R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions[J]. Journal of Solar Energy Engineering, 2011, 133(3): doi: 10.1115/1.4004245. |
37 | 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
JIN Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
38 | HYLAND R, WEXLER A. Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15 K, and of saturated moist air from 173.15 K to 372.15 K, at pressures to 5 MPa[J]. ASHRAE Transactions, 1983, 89: 520-535. |
49 | RANJHA Q, OZTEKIN A. Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage[J]. Renewable Energy, 2017, 111: 825-835. |
40 | WANG M Y, CHEN L, HE P, et al. Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors[J]. Energy, 2019, 181: 417-428. |
41 | YAN J, ZHAO C Y, PAN Z H. The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems[J]. Energy, 2017, 124: 114-123. |
[1] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[2] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[3] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[4] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[5] | Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744. |
[6] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[7] | Yueyuan GU, Jucai WEI, Jindong LI, Luyang WANG, Xu WU. Overview and prospect of studies on electrochemical reduction of carbon dioxide electrolyzers [J]. Energy Storage Science and Technology, 2020, 9(6): 1691-1701. |
[8] | YAN Hongli, JING Zhiliang, LU Zuowei, WANG Yuqi, WU Zhen. Study on coupling characteristics of PEMFC power generation system using chemisorption as solid-state hydrogen storage [J]. Energy Storage Science and Technology, 2020, 9(1): 152-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||