Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3099-3107.doi: 10.19799/j.cnki.2095-4239.2023.0443
• Energy Storage Materials and Devices • Previous Articles Next Articles
Mingzhong WAN1(), Jinlong WANG2, Yongan CHEN1, Yuanwei LU2(), Yuting WU2, Cancan ZHANG2
Received:
2023-06-24
Revised:
2023-08-10
Online:
2023-10-05
Published:
2023-10-09
Contact:
Yuanwei LU
E-mail:mzwan2732@ceec.net.cn;luyuanwei@bjut.edu.cn
CLC Number:
Mingzhong WAN, Jinlong WANG, Yongan CHEN, Yuanwei LU, Yuting WU, Cancan ZHANG. Compatibility of low-temperature mixed nitrate and Q345R storage tank material[J]. Energy Storage Science and Technology, 2023, 12(10): 3099-3107.
1 | 梁银林, 刘庆, 钱勇, 等. 压缩空气储能系统研究概述[J]. 东方电气评论, 2020, 34(3): 82-88. |
LIANG Y L, LIU Q, QIAN Y, et al. Overview of the research on compressed air energy storage system[J]. Dongfang Electric Review, 2020, 34(3): 82-88. | |
2 | 张建军, 周盛妮, 李帅旗, 等. 压缩空气储能技术现状与发展趋势[J]. 新能源进展, 2018, 6(2): 140-150. |
ZHANG J J, ZHOU S N, LI S Q, et al. Overview and development tendency of compressed air energy storage[J]. Advances in New and Renewable Energy, 2018, 6(2): 140-150. | |
3 | 陶飞跃, 王焕然, 李瑞雄, 等. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. | |
4 | 刘士名. 先进绝热压缩空气储能系统热力性能与经济性分析[D]. 北京: 华北电力大学, 2016. |
LIU S M. Analysis of thermal performance and economy for advanced adiabatic compressed air energy storage (AA-CAES) systems[D]. Beijing: North China Electric Power University, 2016. | |
5 | 中盐集团办公室. 世界首座非补燃压缩空气储能电站在江苏常州投产[J]. 中国盐业, 2022(11): 11-12. |
6 | 薛小代, 陈晓弢, 梅生伟, 等. 采用熔融盐蓄热的非补燃压缩空气储能发电系统性能[J]. 电工技术学报, 2016, 31(14): 11-20. |
XUE X D, CHEN X T, MEI S W, et al. Performance of non-supplementary fired compressed air energy storage with molten salt heat storage[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 11-20. | |
7 | 薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1): 164-171. |
XUE X D, MEI S W, LIN Q Y, et al. Energy Internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 164-171. | |
8 | 王鹏. 太阳能光热发电熔盐储罐设计技术研究[J]. 青海电力, 2018, 37(3): 37-40. |
WANG P. Study on design technology of molten salt storage tank for solar thermal power generation[J]. Qinghai Electric Power, 2018, 37(3): 37-40. | |
9 | 熊新强, 杜明俊, 张志贵, 等. 太阳能光热发电熔盐储罐选材、防腐与绝热技术研究[J]. 石油化工高等学校学报, 2017, 30(6): 59-63. |
XIONG X Q, DU M J, ZHANG Z G, et al. Research on material selection, anticorrosion and thermal insulation technology of solar thermal power generation molten salt storage tank[J]. Journal of Petrochemical Universities, 2017, 30(6): 59-63. | |
10 | 郭静, 赵博, 于宇新, 等. 高温熔融盐压力容器用Q345R材料的腐蚀性能研究[J]. 中国特种设备安全, 2019, 35(2): 15-20, 24. |
GUO J, ZHAO B, YU Y X, et al. Study on corrosion properties of Q345R for pressure vessels under the condition of high temperature molten salt[J]. China Special Equipment Safety, 2019, 35(2): 15-20, 24. | |
11 | FERNÁNDEZ A G, LASANTA M I, PÉREZ F J. Molten salt corrosion of stainless steels and low-Cr steel in CSP plants[J]. Oxidation of Metals, 2012, 78(5): 329-348. |
12 | 张学文, 李洪川, 李生云, 等. 304、316不锈钢和Inconel 617镍基合金在硝酸熔盐中的腐蚀行为[J]. 机械工程材料, 2019, 43(5): 24-29. |
ZHANG X W, LI H C, LI S Y, et al. Corrosion behavior of 304, 316 stainless steels and inconel 617 Ni-based alloy in molten nitrate salt[J]. Materials for Mechanical Engineering, 2019, 43(5): 24-29. | |
13 | 李久青, 杜翠薇. 腐蚀试验方法及监测技术[M]. 北京: 中国石化出版社, 2007. |
LI J Q, DU C W. Corrosion test method and monitoring technology[M]. Beijing: China Petrochemical Press, 2007. | |
14 | GOODS S H, BRADSHAW R W. Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts[J]. Journal of Materials Engineering and Performance, 2004, 13(1): 78-87. |
15 | 赵庆贺, 刘俊友, 刘杰. Cr13Si5铁素体耐热钢1100 ℃下高温抗氧化性能研究[J]. 铸造技术, 2011, 32(2): 179-183. |
ZHAO Q H, LIU J Y, LIU J. Research on anti-oxidation properties of Cr13Si5 ferritic heat resistant steel under 1100 ℃[J]. Foundry Technology, 2011, 32(2): 179-183. | |
16 | GROSU Y, ANAGNOSTOPOULOS A, BALAKIN B, et al. Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: Thermophysical properties, stability, compatibility and life cycle analysis[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110838. |
17 | NITHIYANANTHAM U, GROSU Y, ANAGNOSTOPOULOS A, et al. Nanoparticles as a high-temperature anticorrosion additive to molten nitrate salts for concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110171. |
18 | BARAKA A, ABDEL-ROHMAN A I, EL HOSARY A A. Corrosion of mild steel in molten sodium nitrate-potassium nitrate eutectic[J]. British Corrosion Journal, 1976, 11(1): 44-46. |
19 | FERNÁNDEZ A G, PÉREZ F J. Improvement of the corrosion properties in ternary molten nitrate salts for direct energy storage in CSP plants[J]. Solar Energy, 2016, 134: 468-478. |
20 | SOLEIMANI DORCHEH A, GALETZ M C. Slurry aluminizing: A solution for molten nitrate salt corrosion in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells, 2016, 146: 8-15. |
21 | WANG W L, GUAN B, LI X L, et al. Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2019, 194: 36-46. |
22 | FERNÁNDEZ A G, GALLEGUILLOS H, PÉREZ F J. Thermal influence in corrosion properties of Chilean solar nitrates[J]. Solar Energy, 2014, 109: 125-134. |
23 | RUIZ-CABAÑAS F J, PRIETO C, OSUNA R, et al. Corrosion testing device for in situ corrosion characterization in operational molten salts storage tanks: A516 Gr70 carbon steel performance under molten salts exposure[J]. Solar Energy Materials and Solar Cells, 2016, 157: 383-392. |
24 | 孙华, 苏兴治, 张鹏, 等. 聚焦太阳能热发电用熔盐腐蚀研究现状与展望[J]. 腐蚀科学与防护技术, 2017, 29(3): 282-290. |
SUN H, SU X Z, ZHANG P, et al. Research status and progress of molten salts corrosion for concentrated solar thermal power[J]. Corrosion Science and Protection Technology, 2017, 29(3): 282-290. | |
25 | DORCHEH A S, DURHAM R N, GALETZ M C. High temperature corrosion in molten solar salt: The role of chloride impurities[J]. Materials and Corrosion, 2017, 68(9): 943-951. |
26 | ZHANG X M, ZHANG C C, WU Y T, et al. Experimental research of high temperature dynamic corrosion characteristic of stainless steels in nitrate eutectic molten salt[J]. Solar Energy, 2020, 209: 618-627. |
27 | FERNÁNDEZ Á G, CABEZA L F. Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review[J]. Solar Energy Materials and Solar Cells, 2019, 194: 160-165. |
28 | GRABKE H J, REESE E, SPIEGEL M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043. |
29 | ALSHAHRI A H, FORTUNATO L, GHAFFOUR N, et al. Controlling harmful algal blooms (HABs) by coagulation-flocculation-sedimentation using liquid ferrate and clay[J]. Chemosphere, 2021, 274: 129676. |
30 | GAO Q, LU Y W, YANG Y C, et al. Are unexpected chloride ions in molten salt really harmful to stainless steel?[J]. Journal of Energy Storage, 2022, 54: 105317. |
[1] | Min ZHAO, Yang LI, Jie CAI, Weibin KANG, Lei LIU. Experimental study on the performance of capillary phase-change energy storage tank for civil building [J]. Energy Storage Science and Technology, 2023, 12(8): 2626-2637. |
[2] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[3] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[4] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[5] | Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. |
[6] | Jun ZHANG, Fengxia ZHAO, Zhao DU, Kang YANG, Yuanji LI, Xiaohu YANG. Influence of tank shape on heat storage performance: A numerical study [J]. Energy Storage Science and Technology, 2022, 11(11): 3674-3680. |
[7] | XU Zhuang, YANG Kang, DONG Wenping, HE Guangli. Effect of tank structure on hydrogen refueling temperature rise for fuel cell vehicles [J]. Energy Storage Science and Technology, 2020, 9(3): 679-683. |
[8] | WANG Ye, LIN Huxiang, HU Yue, WANG Miao, LIN Yuanshan. Optimization of structure and operation parameters in solar energy storage water tank with hemispherical top and internal staggered obstacle [J]. Energy Storage Science and Technology, 2020, 9(3): 942-950. |
[9] | ZHANG Cancan, WU Yuting, LU Yuanwei. Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2020, 9(2): 435-439. |
[10] | LIU Kai, CAI Yingling. A new type of phase change heat storage tank in solar energy combination system [J]. Energy Storage Science and Technology, 2019, 8(6): 1230-1234. |
[11] | WANG Ye, SONG Rongfei, HU Yue, LU Hongyu. Effect of obstacles with different opening means on thermal stratification in hot water storage tanks [J]. Energy Storage Science and Technology, 2019, 8(5): 897-903. |
[12] | LI Yuanyuan, CHENG Xiaomin. Review on the low melting point alloys for thermal energy storage and heat transfer applications [J]. Energy Storage Science and Technology, 2013, 2(3): 189-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||