Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3191-3202.doi: 10.19799/j.cnki.2095-4239.2023.0398
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Lianbing LI1,2(), Le ZHU1, Ruixiong JING1, Lanchao WANG1, Qiqi HAN2
Received:
2023-06-07
Revised:
2023-07-06
Online:
2023-10-05
Published:
2023-10-09
Contact:
Lianbing LI
E-mail:lilianbing@ hebut.edu.cn
CLC Number:
Lianbing LI, Le ZHU, Ruixiong JING, Lanchao WANG, Qiqi HAN. Remaining useful life prediction of lithium-ion batteries based on the DESSA-DESN model and the NCA algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3191-3202.
Table 2
Characteristics and correlation coefficient"
特征 | 特征类型 | B5 | B6 | B7 | CS2-35 | CS2-36 | CS2-37 |
---|---|---|---|---|---|---|---|
Tcc | 电流曲线相关 | 0.9924 | 0.9467 | 0.9805 | 0.9976 | 0.9982 | 0.9982 |
Tcv | 电流曲线相关 | -0.9012 | -0.9126 | -0.8872 | -0.9012 | -0.8756 | -0.8994 |
Acc | 电流曲线相关 | 0.9965 | 0.9945 | 0.9938 | 0.9983 | 0.9968 | 0.9976 |
Acv | 电压曲线相关 | -0.9323 | -0.9042 | -0.9352 | -0.9428 | -0.9532 | -0.9656 |
Tdcc | 电压曲线相关 | -0.9343 | -0.8954 | -0.9015 | -0.9265 | -0.8662 | -0.8897 |
Rcc | 电压曲线相关 | 0.9938 | 0.9544 | 0.9813 | 0.9947 | 0.9926 | 0.9942 |
ICP | IC曲线相关 | 0.9912 | 0.9567 | 0.9675 | 0.9588 | 0.9481 | 0.9432 |
ICPL | IC曲线相关 | -0.9024 | -0.9349 | -0.9107 | -0.9718 | -0.9723 | -0.9705 |
DVPL | DV曲线相关 | 0.9593 | 0.9636 | 0.9415 | 0.9628 | 0.9543 | 0.9386 |
DVPLD | DV曲线相关 | -0.9223 | -0.9434 | -0.9118 | -0.9212 | -0.9145 | -0.9078 |
Table 4
The life prediction results of NASA battery dataset"
电池型号 | 模型 | RMSE/% | MAE/% | AE/周期 |
---|---|---|---|---|
B5 | DESN | 3.691 | 2.988 | 5 |
DE-DESN | 2.541 | 1.931 | 3 | |
SSA-DESN DESSA-DESN | 1.983 0.914 | 1.542 0.783 | 1 0 | |
B6 | DESN | 4.471 | 3.664 | 3 |
DE-DESN | 3.565 | 2.731 | 3 | |
SSA-DESN DESSA-DESN | 2.535 1.466 | 1.999 0.689 | 1 1 | |
B7 | DESN | 3.071 | 2.613 | — |
DE-DESN | 2.159 | 1.683 | 3 | |
SSA-DESN DESSA-DESN | 1.954 1.269 | 1.332 0.728 | — 1 |
Table 5
The life prediction results of NASA battery dataset"
电池型号 | 预测模型 | RMSE/% | MAE/% | AE/周期 |
---|---|---|---|---|
CS35 | DESN | 3.402 | 2.692 | 2 |
DE-DESN | 2.299 | 1.680 | 2 | |
SSA-DESN DESSA-DESN | 1.968 1.253 | 1.442 0.923 | 1 0 | |
CS36 | DESN | 3.048 | 2.319 | 2 |
DE-DESN | 2.819 | 2.112 | 1 | |
SSA-DESN DESSA-DESN | 1.998 1.284 | 1.492 0.797 | 1 0 | |
CS37 | DESN | 3.376 | 2.686 | 3 |
DE-DESN | 2.251 | 1.565 | 2 | |
SSA-DESN DESSA-DESN | 1.767 1.075 | 1.134 0.793 | 1 1 |
1 | ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16(7): 3167. |
2 | LI A, WEST A C, PREINDL M. Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review[J]. Applied Energy, 2022, 316: 119030. |
3 | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. | |
4 | 崔树辉, 周贺, 黄振兴, 等. 动力电池梯次利用关键技术与应用综述[J]. 广东电力, 2023, 36(1): 9-19. |
CUI S H, ZHOU H, HUANG Z X, et al. Review of key technologies and applications of echelon utilization of power batteries[J]. Guangdong Electric Power, 2023, 36(1): 9-19. | |
5 | 金鑫, 王凯. 平滑新能源波动的混合储能优化配置[J]. 广东电力, 2021, 34(8): 80-85. |
JIN X, WANG K. Optimal allocation of hybrid energy storage to smooth fluctuation of new energy[J]. Guangdong Electric Power, 2021, 34(8): 80-85. | |
6 | XU P H, HU X Y, LIU B L, et al. Hierarchical estimation model of state-of-charge and state-of-health for power batteries considering current rate[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6150-6159. |
7 | YANG K, CHEN Z W, HE Z J, et al. Online estimation of state of health for the airborne Li-ion battery using adaptive DEKF-based fuzzy inference system[J]. Soft Computing, 2020, 24(24): 18661-18670. |
8 | ZHANG J S, JIANG Y C, LI X, et al. Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 632-643. |
9 | 王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222. |
WANG P K, ZHANG X Y, ZHANG G H. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model[J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. | |
10 | MA Y, YAO M H, LIU H C, et al. State of Health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network[J]. Journal of Energy Storage, 2022, 52: 104750. |
11 | 李强龙, 孙建瑞, 赵坤, 等. 基于IALO-SVR的锂电池健康状态预测[J]. 电子测量与仪器学报, 2022, 36(1): 204-211. |
LI Q L, SUN J R, ZHAO K, et al. Prediction for the state of health of lithium-ion batteries based on IALO-SVR[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(1): 204-211. | |
12 | LI P H, ZHANG Z J, GROSU R, et al. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111843. |
13 | LIN M Q, ZENG X P, WU J. State of health estimation of lithium-ion battery based on an adaptive tunable hybrid radial basis function network[J]. Journal of Power Sources, 2021, 504: 230063. |
14 | WU C L, FU J C, HUANG X R, et al. Lithium-ion battery health state prediction based on VMD and DBO-SVR[J]. Energies, 2023, 16(10): 3993. |
15 | CATELANI M, CIANI L, FANTACCI R, et al. Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. |
16 | CHE Y H, HU X S, LIN X K, et al. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects[J]. Energy & Environmental Science, 2023, 16(2): 338-371. |
17 | LI W H, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2021, 482: 228863. |
18 | FENG H L, SONG D D. A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction[J]. Journal of Energy Storage, 2021, 34: 102118. |
19 | FAN Y C, QIU J S, WANG S L, et al. Incremental capacity curve health-indicator extraction based on Gaussian filter and improved relevance vector machine for lithium-ion battery remaining useful life estimation[J]. Metals, 2022, 12(8): 1331. |
20 | XIA F, WANG K G, CHEN J J. State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method[J]. Journal of Energy Storage, 2023, 64: 107161. |
21 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. |
22 | 李建林, 李雅欣, 陈光, 等. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(4): 1332-1347. |
LI J L, LI Y X, CHEN G, et al. Research on feature extraction and SOH evaluation methods for retired power battery[J]. Proceedings of the CSEE, 2022, 42(4): 1332-1347. | |
23 | XIONG R, SUN Y, WANG C X, et al. A data-driven method for extracting aging features to accurately predict the battery health[J]. Energy Storage Materials, 2023, 57: 460-470. |
24 | KIM M, KIM I, KIM J, et al. Lifetime prediction of lithium ion batteries by using the heterogeneity of graphite anodes[J]. ACS Energy Letters, 2023, 8(7): 2946-2953. |
25 | 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384. |
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. | |
26 | JAEGER H, HAAS H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80. |
27 | 刘鹏, 叶润, 闫斌, 等. 一种深度回声状态网络的输入尺度自适应算法[J]. 计算机工程, 2022, 48(2): 92-98, 105. |
LIU P, YE R, YAN B, et al. An adaptive algorithm of input scale for deep echo state networks[J]. Computer Engineering, 2022, 48(2): 92-98, 105. | |
28 | STORN R, PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
29 | 张子恒, 吴定会, 杨朝辉, 等. 基于改进差分进化算法的微网容量优化配置[J]. 控制工程, 2023, 30(1): 90-97. |
ZHANG Z H, WU D H, YANG Z H, et al. Optimal allocation of microgrid capacity based on improved differential evolution algorithm[J]. Control Engineering of China, 2023, 30(1): 90-97. | |
30 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. |
31 | 冯增喜, 何鑫, 崔巍, 等. 混合随机反向学习和高斯变异的混沌松鼠搜索算法[J]. 计算机集成制造系统, 2023, 29(2): 604-615. |
FENG Z X, HE X, CUI W, et al. Chaos squirrel search algorithm based on random inverse learning and Gaussian mutation[J]. Computer Integrated Manufacturing Systems, 2023, 29(2): 604-615. | |
32 | WANG J W, DENG Z W, YU T, et al. State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51: 104512. |
33 | FENG H L, YAN H M. State of health estimation of large-cycle lithium-ion batteries based on error compensation of autoregressive model[J]. Journal of Energy Storage, 2022, 52: 104869. |
34 | MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. |
35 | JI Y F, CHEN Z W, SHEN Y, et al. An RUL prediction approach for lithium-ion battery based on SADE-MESN[J]. Applied Soft Computing, 2021, 104: 107195. |
[1] | Yibiao GUAN, Jinran SHEN, Jialiang LIU, Zhanzhan QU, Fei GAO, Shiyang LIU, Cuijing GUO, Shuqin ZHOU, Shanshan FU. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications [J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953. |
[2] | Chengbo TANG, Yaohong SUO, Zhaokun HE. Effect of fluid-flow direction on heat dissipation from lithium-ion batteries based on sine-function cooling plate [J]. Energy Storage Science and Technology, 2023, 12(8): 2547-2555. |
[3] | Minghu WU, Chengpeng YUE, Fan ZHANG, Junxiao LI, Wei HUANG, Sheng HU, Jing TANG. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition [J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228. |
[4] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
[5] | Xinghai SONG, Xiaoqian ZHANG, Huishi LIANG, Zinan SHI, Miangang LI, Kui ZHOU, Xiaoxu GONG. Predicting the remaining service life of lithium batteries based on the SDAE-transformer-ECA network [J]. Energy Storage Science and Technology, 2023, 12(10): 3181-3190. |
[6] | Yawen ZHAO, Yu HUANG, Yanru ZHANG. Analysis of safety test standard of rail transit power lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2505-2518. |
[7] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[8] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[9] | Fang LI, Yongjun MIN, Chen WANG, Yong ZHANG. State of health estimation and remaining useful life predication of lithium batteries using charging process [J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. |
[10] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[11] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[12] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[13] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[14] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[15] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||