Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3203-3213.doi: 10.19799/j.cnki.2095-4239.2023.0387
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zheng CHEN(), Yang CHEN, Jiangwei SHEN(), Xuelei XIA, Shiquan SHEN, Renxin XIAO
Received:
2023-06-05
Revised:
2023-06-29
Online:
2023-10-05
Published:
2023-10-09
Contact:
Jiangwei SHEN
E-mail:chen@kust.edu.cn;shenjiangwei6@kust.edu.cn
CLC Number:
Zheng CHEN, Yang CHEN, Jiangwei SHEN, Xuelei XIA, Shiquan SHEN, Renxin XIAO. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213.
Table 4
Estimation results and advantages and disadvantages of different methods"
模型 | 评价标准 | 误差结果/% | 优点 | 缺点 |
---|---|---|---|---|
SSA-SVR | MAE | 1.02 | 模型运行速度快,超参数寻优效果好 | 处理大样本数据时,精度略有下降 |
AAE | 0.11 | |||
RMSE | 0.22 | |||
SVM | MAE | 8.48 | 小样本估算效果好 | 在处理大样本数据时效果差,超参数寻优效果差 |
AAE | 1.07 | |||
RMSE | 2.24 | |||
LSTM | MAE | 1.96 | 擅长处理时序数据 | 需要大量数据,训练结果过于依赖样本质量 |
AAE | 0.28 | |||
RMSE | 0.56 | |||
GPR | MAE | 6.75 | 适合高维度样本数据,具备不确定性表达能力 | 计算成本高,超参数寻优效果差 |
AAE | 1.25 | |||
RMSE | 2.41 |
1 | ZHANG C, YANG F, KE X Y, et al. Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations[J]. Applied Energy, 2019, 254: 113597. |
2 | 陈峥, 李金元, 舒星, 等. 基于混合神经网络的锂离子电池健康状态估算[J]. 昆明理工大学学报(自然科学版), 2022, 47(3): 87-95. |
CHEN Z, LI J Y, SHU X, et al. State of health estimation for lithium-ion battery based on hybrid neural network[J]. Journal of Kunming University of Science and Technology (Natural Science), 2022, 47(3): 87-95. | |
3 | 林名强, 吴登高, 郑耿峰, 等. 基于表面温度和增量容量的锂电池健康状态估计[J]. 汽车工程, 2021, 43(9): 1285-1290, 1284. |
LIN M Q, WU D G, ZHENG G F, et al. Estimation method of state of health of lithium battery based on surface temperature and incremental capacity[J]. Automotive Engineering, 2021, 43(9): 1285-1290, 1284. | |
4 | SONG Y C, LIU D T, LIAO H T, et al. A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries[J]. Applied Energy, 2020, 261: 114408. |
5 | 谷平维, 段彬, 康永哲, 等. 基于随机充电数据的锂离子电池容量在线估计[J/OL]. 机械工程学报: 1-11[2023-04-28]. http://kns.cnki.net/kcms/detail/11.2187.TH.20230110.1451.021.html. |
6 | SHU X, LI G A, ZHANG Y J, et al. Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles[J]. Journal of Power Sources, 2020, 471: 228478. |
7 | GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450. |
8 | LI X Y, YUAN C G, LI X H, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467. |
9 | CHEN Z, SUN M M, SHU X, et al. Online state of health estimation for lithium-ion batteries based on support vector machine[J]. Applied Sciences, 2018, 8(6): 925. |
10 | LI X Y, WANG Z P, ZHANG L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 174: 33-44. |
11 | 熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J/OL]. 高电压技术: 1-14[2023-04-28]. https://doi.org/10.13336/j.1003-6520.hve.20221843. |
12 | CHEN Z, XUE Q, WU Y T, et al. Capacity prediction and validation of lithium-ion batteries based on long short-term memory recurrent neural network[J]. IEEE Access, 2020, 8: 172783-172798. |
13 | COUTO L D, SCHORSCH J, JOB N, et al. State of health estimation for lithium ion batteries based on an equivalent-hydraulic model: An iron phosphate application[J]. Journal of Energy Storage, 2019, 21: 259-271. |
14 | 申江卫, 马文赛, 肖仁鑫, 等. 基于优化高斯过程回归算法的锂离子电池可用容量估算[J]. 中国公路学报, 2022, 35(8): 31-43. |
SHEN J W, MA W S, XIAO R X, et al. Available capacity estimation of lithium-ion batteries based on optimized Gaussian process regression[J]. China Journal of Highway and Transport, 2022, 35(8): 31-43. | |
15 | 舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128. |
SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128. | |
16 | 韦荣阳, 毛阗, 高晗, 等. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
WEI R Y, MAO T, GAO H, et al. Estimation of health state of lithium-ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. | |
17 | 张萍, 陆霞, 孟庆鹤. 基于多策略麻雀搜索算法的微电网容量优化配置[J]. 电气技术, 2023, 24(1): 1-9. |
ZHANG P, LU X, MENG Q H. Optimal allocation of micro-grid capacity based on multi-strategy sparrow search algorithm[J]. Electrical Engineering, 2023, 24(1): 1-9. | |
18 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
19 | 李尧太. 基于AICKF的锂离子动力电池全寿命周期SOC估算研究[D]. 镇江: 江苏大学, 2021. |
LI Y T. Research on life cycle SOC estimation of lithium-ion power battery based on AICKF[D].Zhenjiang: Jiangsu University, 2021. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[3] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[4] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[7] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[8] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[9] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[10] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[11] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[12] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[13] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[14] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[15] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||