Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1784-1793.doi: 10.19799/j.cnki.2095-4239.2023.0184
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shenran ZHANG(), Lihuan XU, Chang SU()
Received:
2023-03-28
Revised:
2023-04-03
Online:
2023-06-05
Published:
2023-06-21
Contact:
Chang SU
E-mail:zhangsr97@163.com;suchang@syuct.edu.cn
CLC Number:
Shenran ZHANG, Lihuan XU, Chang SU. Influence of different carbon contents on the electrochemical performance of SiO/C anode[J]. Energy Storage Science and Technology, 2023, 12(6): 1784-1793.
1 | YOUN D, KIM N G, JEONG W J, et al. Endothermic dehydrogenation-driven preventive magnesiation of SiO for high-performance lithium storage materials[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45333-45341. |
2 | PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries[J]. Journal of Power Sources, 2019, 413: 20-28. |
3 | CHOI G, KIM J, KANG B. Understanding limited reversible capacity of a SiO electrode during the first cycle and its effect on initial Coulombic efficiency[J]. Chemistry of Materials, 2019, 31(16): 6097-6104. |
4 | YAN M Y, LIU Z, LU Z Y, et al. Stable Li storage in micron-sized SiOx particles with rigid-flexible coating[J]. Journal of Energy Chemistry, 2022, 64: 309-314. |
5 | ZHANG K Y, DU W Z, QIAN Z, et al. SiOx embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithium-ion batteries[J]. Carbon, 2021, 178: 202-210. |
6 | CHEN L Y, ZHENG J, LIN S Y, et al. Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(4): 3562-3568. |
7 | WANG J Y, WANG X L, LIU B N, et al. Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode[J]. Nano Energy, 2020, 78: doi:10.1016/j.nanoen.2020.105101. |
8 | GE J W, TANG Q T, SHEN H L, et al. Controllable preparation of disproportionated SiOX/C sheets with 3D network as high-performance anode materials of lithium ion battery[J]. Applied Surface Science, 2021, 552: doi: 10.1016/j.apsusc.2021.149446. |
9 | REN W F, ZHANG Z L, WANG Y H, et al. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(11): 5859-5865. |
10 | LEE J S, KIM D, SHIN D, et al. A new process for minimizing residual silicon and carbon of reaction-bonded silicon carbide via chemical vapor deposition[J]. Journal of the European Ceramic Society, 2021, 41(7): 4000-4005. |
11 | CHOI I, LEE M J, OH S M, et al. Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM[J]. Electrochimica Acta, 2012, 85: 369-376. |
12 | HAN L, ZHANG X L, LI J F, et al. Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode[J]. Journal of Colloid and Interface Science, 2021, 599: 556-565. |
13 | XIANG B, AN W L, FU J J, et al. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode[J]. Rare Metals, 2021, 40(2): 383-392. |
14 | ZHAI W, AI Q, CHEN L N, et al. Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes[J]. Nano Research, 2017, 10(12): 4274-4283. |
15 | ZHAO J, ZHOU G M, YAN K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017, 12(10): 993-999. |
16 | YAO C, LI X L, DENG Y X, et al. An efficient prelithiation of graphene oxide nanoribbons wrapping silicon nanoparticles for stable Li+ storage[J]. Carbon, 2020, 168: 392-403. |
17 | WANG W, EPUR R, KUMTA P N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery[J]. Electrochemistry Communications, 2011, 13(5): 429-432. |
18 | LI H, YAN X M, MA Z F, et al. Silicon oxycarbide-carbon hybrid nanofibers: A promising anode for ultralong-cycle lithium ion batteries with high rate capability[J]. Ceramics International, 2021, 47(5): 6867-6874. |
19 | ZHAO H, TU N, ZHANG W B, et al. Novel synthesis of silicon/carbon nanotubes microspheres as anode additives through chemical vapor deposition in fluidized bed reactors[J]. Scripta Materialia, 2021, 192: 49-54. |
20 | CHEN R C, HSIAO L Y, WU C Y, et al. Facile synthesizing silicon waste/carbon composites via rapid thermal process for lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2019, 791: 19-29. |
21 | SHI J, JIANG X S, SUN J F, et al. A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 588: 737-748. |
22 | QI C L, LI S P, YANG Z P, et al. Suitable thickness of carbon coating layers for silicon anode[J]. Carbon, 2022, 186: 530-538. |
23 | HIROSE T, MORISHITA M, YOSHITAKE H, et al. Investigation of carbon-coated SiO phase changes during charge/discharge by X-ray absorption fine structure[J]. Solid State Ionics, 2017, 304: 1-6. |
24 | WOO J, BAEK S H, PARK J S, et al. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries[J]. Journal of Power Sources, 2015, 299: 25-31. |
25 | ZHANG H X, LÓPEZ-HONORATO E, XIAO P. Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship between microstructure and mechanical properties[J]. Carbon, 2015, 91: 346-357. |
26 | HAN J L, CHEN G R, YAN T T, et al. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery[J]. Chemical Engineering Journal, 2018, 347: 273-279. |
27 | SHI H B, ZHANG H, LI X X, et al. In situ fabrication of dual coating structured SiO/1D-C/a-C composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition[J]. Carbon, 2020, 168: 113-124. |
28 | XIAO Z X, YU C H, LIN X Q, et al. Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material[J]. Carbon, 2019, 149: 462-470. |
29 | XIAO Z X, YU C H, LIN X Q, et al. TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material[J]. Nano Energy, 2020, 77: doi: 10.1016/j.nanoen.2020.105082. |
30 | SHI H B, SHAO G Q, WU B B, et al. Scalable synthesis of a dual-confined SiO/one-dimensional carbon/amorphous carbon anode based on heterogeneous carbon structure evolution[J]. Journal of Materials Chemistry A, 2021, 9(46): 26236-26247. |
31 | FU R S, JI J J, YUN L, et al. Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability[J]. Energy Storage Materials, 2021, 35: 317-326. |
[1] | Mingrui LIU, Kai DING, Wei WANG, Jin SUN. Research progress of hydrogen storage materials based on physical adsorption [J]. Energy Storage Science and Technology, 2023, 12(6): 1804-1814. |
[2] | Wei ZHANG, Shigang LUO, Jie TENG, Yongli BAI. Joint planning of renewable energy and storage considering thermostatically controlled loads aggregation regulation [J]. Energy Storage Science and Technology, 2023, 12(6): 1901-1912. |
[3] | Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. |
[4] | Xinlei CAI, Jinzhou ZHU, Mai LIU, Jiale LIU, Zijie MENG, Yang YU. Peak shaving strategy of electric vehicles based on an improved Dingo optimization algorithm [J]. Energy Storage Science and Technology, 2023, 12(6): 1913-1919. |
[5] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[6] | Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408. |
[7] | Yongshi YU, Xianming XIA, Hongyang HUANG, Yu YAO, Xianhong RUI, Guobin ZHONG, Wei SU, Yan YU. Research progress on sodium metal anode modified by artificial interface layer [J]. Energy Storage Science and Technology, 2023, 12(5): 1380-1391. |
[8] | Junpeng GUO, Qi SUN, Yuefang CHEN, Yuwen ZHAO, Huan YANG, Zhijia ZHANG. Preparation of three-dimensional multistage iron oxide/carbon nanofiber integrated electrode and sodium storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1469-1479. |
[9] | Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2023 to Mar. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(5): 1553-1569. |
[10] | Kangkang QU, Yahua LIU, Die HONG, Zhaoxi SHEN, Xiaozhao HAN, Xu ZHANG. Research progress on positive electrolytes for neutral aqueous organic redox flow battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1570-1588. |
[11] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[12] | Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1589-1603. |
[13] | Hai WANG, Yuhua BIAN, Jiadong WANG, Zhaoyang LIU, Jie ZHANG, Jian YAO, Xuanwen GAO, Zhaomeng LIU, Wenbin LUO. Retired lithium battery recycling and battery-grade lithium carbonate preparation [J]. Energy Storage Science and Technology, 2023, 12(5): 1453-1460. |
[14] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[15] | Chang LIU, Junjun YAO, Ying SUN, Daming FENG, Hongjie ZHENG, Tianyi MA. Coordinated preparation of pitch-based carbon microspheres for anode materials of high-rate potassium-ion batteries by emulsification/oxidation [J]. Energy Storage Science and Technology, 2023, 12(5): 1444-1452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||