Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3856-3870.doi: 10.19799/j.cnki.2095-4239.2024.0553
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xueqi XING(), Pengxiang SONG(), Aijing SHEN, Yanghui LU, Jun CHEN, Wei LIU
Received:
2024-06-19
Revised:
2024-07-01
Online:
2024-11-28
Published:
2024-11-27
Contact:
Pengxiang SONG
E-mail:xixuqi@tju.edu.cn;songpengxiang@spic.com.cn
CLC Number:
Xueqi XING, Pengxiang SONG, Aijing SHEN, Yanghui LU, Jun CHEN, Wei LIU. Recent progress of anion exchange membrane for hydrogen production via water electrolysis[J]. Energy Storage Science and Technology, 2024, 13(11): 3856-3870.
Table 1
Illustration of the main technical parameters and characteristics for alkaline water electrolysis, proton exchange membrane water electrolysis, and anion exchange membrane water electrolysis[3-5]"
项目 | 碱性电解水制氢 | 质子交换膜电解水制氢 | 阴离子交换膜电解水制氢 |
---|---|---|---|
隔膜 | 多孔隔膜(如PPS织布) | 质子交换膜(如Nafion) | 阴离子交换膜 |
阴极 | NiMo合金 | 铂族金属 | 过渡金属 |
阳极 | NiCo合金 | RuO x 、IrO x | 过渡金属 |
双极板 | 不锈钢镀镍 | 石墨板或钛板 | 镍板或不锈钢板 |
电解液 | KOH 溶液 | 纯水 | 碱溶液或纯水 |
电流密度/(A/cm2) | <0.5 | 1~2 | 1~2 |
操作温度/℃ | 60~90 | 50~90 | 40~80 |
气体纯度 | >99.5% | >99.99% | >99.99% |
寿命/h | 约100000 | <10000 | <2000 |
成本 | 低 | 高 | — |
技术成熟度 | 成熟 | 小规模商业化 | 研发中 |
优点 | 技术成熟度高;使用非贵金属催化剂,成本低 | 能量效率高;气体纯度高;电流密度高;响应迅速 | 能量效率高;响应迅速;使用非贵金属催化剂,成本低;气体纯度高 |
缺点 | 能量效率低;电流密度低;气体纯度低;响应能力差 | 使用贵金属催化剂和Nafion膜,成本高;稳定性差 | 技术成熟度低;寿命短 |
Table 2
Comparison of reported anion exchange membrane in conductivity and alkaline stability"
隔膜 | 电导率 | 耐碱稳定性 | 参考文献 | ||
---|---|---|---|---|---|
OH-电导率/(mS/cm) | 温度/℃ | 测试条件① | 电导率保持率 | ||
C6D40 | 28 | 室温 | 1 mol/L NaOH, 80 ℃, 2000 h | 67% | [ |
PE-NH2-2.06 | 108.2 | 80 | 4 mol/L KOH, 80 ℃, 400 h | >80% | [ |
DQPPO-17-OH | 63.9 | 80 | 2 mol/L NaOH, 80 ℃, 480 h | 92.6% | [ |
PSU-P-PG | 30.6 | 60 | 1 mol/L NaOH, 60 ℃, 30天 | — | [ |
PPO-BG4-75 | 50.0 | 80 | 1 mol/L NaOH, 60 ℃, 30天 | ~93.0% | [ |
AAEM-17 | 22.0 | 22 | 1 mol/L KOH, 80 ℃, 19天 | 81.8% | [ |
MTPP-(2,4,6-Me) | 27.0 | 室温 | 1 mol/L KOD/(CD3OD+D2O), 80 ℃, 5000 h | 82.0% | [ |
PDB155P-HAH60 | 78.6 | 90 | 4 mol/L NaOH, 60 ℃, 10天 | 97.5% | [ |
PECryp13-Ba | 81.0 | 60 | 15 mol/L NaOH, 60 ℃, 1500 h | >70% | [ |
TMImPPO | 60.0 | 80 | 1 mol/L NaOD/D2O/CD3OD, 60 ℃, 7天 | 91.1% | [ |
AEM-1.95 | ~57.0 | 60 | 5 mol/L KOH, 50 ℃, 48 h | ~89.0% | [ |
xBEO-PPO | 132.0 | 80 | 1 mol/L KOH, 80 ℃, 620 h | 68.0% | [ |
QPPEEK-PEG 20 | 102.0 | 80 | 1 mol/L KOH, 80 ℃, 400 h | 85.0% | [ |
x-TriPPO-50SEBS | 77.4 | 80 | 1 mol/L KOH, 80 ℃, 960 h | 99.6% | [ |
bPES-Pip-10-5 | 105.4 | 80 | 1 mol/L KOH, 60 ℃, 336 h | 88.0% | [ |
PyPBI-BuI | 128.6 | 80 | 5 mol/L KOH, 60 ℃, 21天 | ~99.0% | [ |
PFTP-13 | ~175.0 | 80 | 5 mol/L KOH, 80 ℃, 2000 h | ~80.0% | [ |
PTP-90 | 128.9 | 80 | 1 mol/L KOH, 80 ℃, 934 h | 60.0% | [ |
PSAN69-[MVBPip][OH]25 | 49.4 | 80 | 1 mol/L KOH, 80 ℃, 480 h | 85.4% | [ |
F20C9N | 70 | 80 | 1 mol/L NaOH, 80 ℃, 500 h | 91.0% | [ |
PEP80-30PS | 204.7 | 80 | 1 mol/L KOH, 80 ℃, 35天 | 84.7% | [ |
1 | AILI D, KRAGLUND M R, RAJAPPAN S C, et al. Electrode separators for the next-generation alkaline water electrolyzers[J]. ACS Energy Letters, 2023, 8(4): 1900-1910. DOI: 10.1021/acsenergylett.3c00185. |
2 | LI Q H, MOLINA VILLARINO A, PELTIER C R, et al. Anion exchange membrane water electrolysis: The future of green hydrogen[J]. The Journal of Physical Chemistry C, 2023, 127(17): 7901-7912. DOI: 10.1021/acs.jpcc.3c00319. |
3 | VINODH R, KALANUR S S, NATARAJAN S K, et al. Recent advancements of polymeric membranes in anion exchange membrane water electrolyzer (AEMWE): A critical review[J]. Polymers, 2023, 15(9): 2144. DOI: 10.3390/polym15092144. |
4 | XU Q C, ZHANG L Y, ZHANG J H, et al. Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation[J]. EnergyChem, 2022, 4(5): 100087. DOI: 10.1016/j.enchem.2022.100087. |
5 | 万磊, 徐子昂, 王培灿, 等. 电解水制氢的耐碱离子膜研究进展[J]. 化工进展, 2022, 41(3): 1556-1568. DOI: 10.16085/j.issn.1000-6613.2021-2217. |
WAN L, XU Z A, WANG P C, et al. Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1556-1568. DOI: 10.16085/j.issn.1000-6613.2021-2217. | |
6 | LIU L, MA H Y, KHAN M, et al. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: A review[J]. Membranes, 2024, 14(4): 85. DOI: 10.3390/membranes14040085. |
7 | DU N Y, ROY C, PEACH R, et al. Anion-exchange membrane water electrolyzers[J]. Chemical Reviews, 2022, 122(13): 11830-11895. DOI: 10.1021/acs.chemrev.1c00854. |
8 | MARDLE P, CHEN B Y, HOLDCROFT S. Opportunities of ionomer development for anion-exchange membrane water electrolysis[J]. ACS Energy Letters, 2023, 8(8): 3330-3342. DOI: 10.1021/acsenergylett.3c01040. |
9 | SANTORO C, LAVACCHI A, MUSTARELLI P, et al. What is next in anion-exchange membrane water electrolyzers? Bottlenecks, benefits, and future[J]. ChemSusChem, 2022, 15(8): e202200027. DOI: 10.1002/cssc.202200027. |
10 | GREW K N, CHIU W K S. A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes[J]. Journal of the Electrochemical Society, 2010, 157(3): B327. DOI: 10.1149/1.3273200. |
11 | CHEN C, TSE Y L S, LINDBERG G E, et al. Hydroxide solvation and transport in anion exchange membranes[J]. Journal of the American Chemical Society, 2016, 138(3): 991-1000. DOI: 10.1021/jacs.5b11951. |
12 | DONG D P, ZHANG W W, VAN DUIN A C T, et al. Grotthuss versus vehicular transport of hydroxide in anion-exchange membranes: Insight from combined reactive and nonreactive molecular simulations[J]. The Journal of Physical Chemistry Letters, 2018, 9(4): 825-829. DOI: 10.1021/acs.jpclett.8b00004. |
13 | FOGLIA F, BERROD Q, CLANCY A J, et al. Disentangling water, ion and polymer dynamics in an anion exchange membrane[J]. Nature Materials, 2022, 21(5): 555-563. DOI: 10.1038/s41563-022-01197-2. |
14 | 闫旭鹏, 卢启辰, 任志博, 等. 水电解制氢用商业化阴离子交换膜发展现状[J]. 储能科学与技术, 2023, 12(9): 2811-2822. DOI: 10.19799/j.cnki.2095-4239.2023.0271. |
YAN X P, LU Q C, REN Z B, et al. Progress in developing commercial anion exchange membranes for hydrogen production by water electrolysis[J]. Energy Storage Science and Technology, 2023, 12(9): 2811-2822. DOI: 10.19799/j.cnki.2095-4239. 2023. 0271. | |
15 | YU R J, YANG H T, YU X H, et al. Preparation and research progress of anion exchange membranes[J]. International Journal of Hydrogen Energy, 2024, 50: 582-604. DOI: 10.1016/j.ijhydene.2023.08.322. |
16 | XUE J D, ZHANG J F, LIU X, et al. Toward alkaline-stable anion exchange membranes in fuel cells: Cycloaliphatic quaternary ammonium-based anion conductors[J]. Electrochemical Energy Reviews, 2022, 5(2): 348-400. DOI: 10.1007/s41918-021-00105-7. |
17 | LI N W, LENG Y J, HICKNER M A, et al. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells[J]. Journal of the American Chemical Society, 2013, 135(27): 10124-10133. DOI: 10.1021/ja403671u. |
18 | MARINO M G, KREUER K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3): 513-523. DOI: 10.1002/cssc.201403022. |
19 | ZHANG F, LI T T, CHEN W T, et al. Electron-donating C-NH2 link backbone for highly alkaline and mechanical stable anion exchange membranes[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10490-10499. DOI: 10.1021/acsami.1c00324. |
20 | WU J R, WEI X T, JIANG H, et al. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry[J]. Polymer, 2021, 228: 123920. DOI: 10.1016/j.polymer.2021.123920. |
21 | SALMA U, SHALAHIN N. A mini-review on alkaline stability of imidazolium cations and imidazolium-based anion exchange membranes[J]. Results in Materials, 2023, 17: 100366. DOI: 10.1016/j.rinma.2023.100366. |
22 | HUGAR K M, KOSTALIK H A 4th, COATES G W. Imidazolium cations with exceptional alkaline stability: A systematic study of structure-stability relationships[J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737. DOI: 10.1021/jacs.5b02879. |
23 | LIN B C, DONG H L, LI Y Y, et al. Alkaline stable C2-substituted imidazolium-based anion-exchange membranes[J]. Chemistry of Materials, 2013, 25(9): 1858-1867. DOI: 10.1021/cm400468u. |
24 | WANG J H, GU S, KASPAR R B, et al. Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells[J]. ChemSusChem, 2013, 6(11): 2079-2082. DOI: 10.1002/cssc.201300285. |
25 | GU F L, DONG H L, LI Y Y, et al. Highly stable N3-substituted imidazolium-based alkaline anion exchange membranes: Experimental studies and theoretical calculations[J]. Macromolecules, 2014, 47(1): 208-216. DOI: 10.1021/ma 402334t. |
26 | FAN J T, WILLDORF-COHEN S, SCHIBLI E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability[J]. Nature Communications, 2019, 10(1): 2306. DOI: 10.1038/s41467-019-10292-z. |
27 | WANG J H, LI S H, ZHANG S B. Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications[J]. Macromolecules, 2010, 43(8): 3890-3896. DOI: 10.1021/ma100260a. |
28 | XUE B X, WANG F, ZHENG J F, et al. Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations[J]. Molecular Systems Design & Engineering, 2019, 4(5): 1039-1047. DOI: 10.1039/C9ME00064J. |
29 | BAUER B, STRATHMANN H, EFFENBERGER F. Anion-exchange membranes with improved alkaline stability[J]. Desalination, 1990, 79(2/3): 125-144. DOI: 10.1016/0011-9164(90)85002-R. |
30 | GOTTESFELD S, DEKEL D R, PAGE M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges[J]. Journal of Power Sources, 2018, 375: 170-184. DOI: 10.1016/j.jpowsour.2017.08.010. |
31 | NOONAN K J T, HUGAR K M, KOSTALIK H A 4th, et al. Phosphonium-functionalized polyethylene: A new class of base-stable alkaline anion exchange membranes[J]. Journal of the American Chemical Society, 2012, 134(44): 18161-18164. DOI: 10.1021/ja307466s. |
32 | ZHANG B Z, KASPAR R B, GU S, et al. A new alkali-stable phosphonium cation based on fundamental understanding of degradation mechanisms[J]. ChemSusChem, 2016, 9(17): 2374-2379. DOI: 10.1002/cssc.201600468. |
33 | THOMAS J, THOMAS M E, THOMAS S, et al. A perspective into recent progress on the tailored cationic group-based polymeric anion exchange membranes intended for electrochemical energy applications[J]. Materials Today Chemistry, 2024, 35: 101866. DOI: 10.1016/j.mtchem.2023.101866. |
34 | ZHA Y P, DISABB-MILLER M L, JOHNSON Z D, et al. Metal-cation-based anion exchange membranes[J]. Journal of the American Chemical Society, 2012, 134(10): 4493-4496. DOI: 10.1021/ja211365r. |
35 | KWASNY M T, ZHU L, HICKNER M A, et al. Thermodynamics of counterion release is critical for anion exchange membrane conductivity[J]. Journal of the American Chemical Society, 2018, 140(25): 7961-7969. DOI: 10.1021/jacs.8b03979. |
36 | ZHU T Y, SHA Y, FIROUZJAIE H A, et al. Rational synthesis of metallo-cations toward redox- and alkaline-stable metallo-polyelectrolytes[J]. Journal of the American Chemical Society, 2020, 142(2): 1083-1089. DOI: 10.1021/jacs.9b12051. |
37 | LIU X, XIE N, XUE J D, et al. Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells[J]. Nature Energy, 2022, 7: 329-339. DOI: 10.1038/s41560-022-00978-y. |
38 | CHEN Y N, LI Z M, CHEN N J, et al. Preparation and characterization of cross-linked polyphosphazene-crown ether membranes for alkaline fuel cells[J]. Electrochimica Acta, 2017, 258: 311-321. DOI: 10.1016/j.electacta.2017.11.049. |
39 | ZHANG H X, WANG X Y, WANG Y, et al. Alkaline-stable anion-exchange membranes with barium[2.2.2]Cryptate cations: The importance of high binding constants[J]. Angewandte Chemie International Edition, 2023, 62(15): e202217742. DOI: 10.1002/anie.202217742. |
40 | ZHU Y, HE Y B, GE X L, et al. A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: Role of its structure in alkaline stability[J]. Journal of Materials Chemistry A, 2018, 6(2): 527-534. DOI: 10.1039/C7TA09095A. |
41 | LIU Y, WANG J Y. Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis[J]. Journal of Membrane Science, 2020, 596: 117591. DOI: 10.1016/j.memsci.2019.117591. |
42 | BAI T T, CONG M Y, JIA Y X, et al. Preparation of self-crosslinking anion exchange membrane with acid block performance from side-chain type polysulfone[J]. Journal of Membrane Science, 2020, 599: 117831. DOI: 10.1016/j.memsci.2020.117831. |
43 | SUNG S, MAYADEVI T S, MIN K, et al. Crosslinked PPO-based anion exchange membranes: The effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length[J]. Journal of Membrane Science, 2021, 619: 118774. DOI: 10.1016/j.memsci.2020.118774. |
44 | KUMARI M, DOUGLIN J C, DEKEL D R. Crosslinked quaternary phosphonium-functionalized poly(ether ether ketone) polymer-based anion-exchange membranes[J]. Journal of Membrane Science, 2021, 626: 119167. DOI: 10.1016/j.memsci. 2021. 119167. |
45 | CHOI J, MIN K, MO Y H, et al. Understanding the effect of triazole on crosslinked PPO-SEBS-based anion exchange membranes for water electrolysis[J]. Polymers, 2023, 15(7): 1736. DOI: 10.3390/polym15071736. |
46 | SHEN B, SANA B, PU H T. Multi-block poly(ether sulfone) for anion exchange membranes with long side chains densely terminated by piperidinium[J]. Journal of Membrane Science, 2020, 615: 118537. DOI: 10.1016/j.memsci.2020.118537. |
47 | YANG B W, ZHANG C M. Progress in constructing high-performance anion exchange Membrane: Molecular design, microphase controllability and in-device property[J]. Chemical Engineering Journal, 2023, 457: 141094. DOI: 10.1016/j.cej. 2022.141094. |
48 | YOU W, GANLEY J M, ERNST B G, et al. Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes[J]. Chemical Science, 2021, 12(11): 3898-3910. DOI: 10.1039/d0sc05789d. |
49 | PARK E J, MAURYA S, HIBBS M R, et al. Alkaline stability of quaternized Diels-Alder polyphenylenes[J]. Macromolecules, 2019, 52(14): 5419-5428. DOI: 10.1021/acs.macromol.9b00853. |
50 | SANA B, DAS A, SHARMA M, et al. Alkaline anion exchange membrane from alkylated polybenzimidazole[J]. ACS Applied Energy Materials, 2021, 4(9): 9792-9805. DOI: 10.1021/acsaem.1c01862. |
51 | CHEN N J, WANG H H, KIM S P, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells[J]. Nature Communications, 2021, 12: 2367. DOI: 10.1038/s41467-021-22612-3. |
52 | HU X, HUANG Y D, LIU L, et al. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability[J]. Journal of Membrane Science, 2021, 621: 118964. DOI: 10.1016/j.memsci. 2020.118964. |
53 | XU F, SU Y, YUAN W S, et al. Piperidinium-based anion-exchange membranes with an aliphatic main chain for alkaline fuel cells[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14817-14824. DOI: 10.1021/acs.iecr.0c02736. |
54 | XU F, LI Y T, DING J N, et al. Current challenges on the alkaline stability of anion exchange membranes for fuel cells[J]. ChemElectroChem, 2023, 10(24). DOI: 10.1002/celc.202300445. |
55 | ZHU L, PENG X, SHANG S L, et al. High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes[J]. Advanced Functional Materials, 2019, 29(26): 1902059. DOI: 10.1002/adfm.201902059. |
56 | CHEN H H, BANG K T, TIAN Y, et al. Poly(ethylene piperidinium)s for anion exchange membranes[J]. Angewandte Chemie International Edition, 2023, 62(38): e202307690. DOI: 10.1002/anie.202307690. |
57 | XUE B X, WANG Q, ZHENG J F, et al. Bi-guanidinium-based crosslinked anion exchange membranes: Synthesis, characterization, and properties[J]. Journal of Membrane Science, 2020, 601: 117923. DOI: 10.1016/j.memsci. 2020. 117923. |
[1] | YANG Jianfeng, LI Linyan, WU Zhenyue, WANG Kaixue. Progress of inorganic solid electrolyte for lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. |
[2] | DONG Qin, LI Cunpu, WEI Zidong. Development of alkaline membrane technologies in fuel cells [J]. Energy Storage Science and Technology, 2018, 7(2): 211-220. |
[3] | Wu Jianfang, Guo Xin. Point defects in solid-state lithium ion conducting oxides [J]. Energy Storage Science and Technology, 2016, 5(5): 745-753. |
[4] | TAO Yicheng1,2, CHEN Shaojie2, CHEN Xiaotian2, PENG Gang2, LV Zhanpeng1, XU Xiaoxiong2 . Compounding preparation of novel solid electrolyte with high lithium ion conductivity [J]. Energy Storage Science and Technology, 2016, 5(4): 462-468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||