Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3826-3855.doi: 10.19799/j.cnki.2095-4239.2024.0459
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhen CHEN(), Xian'ao LI, Yiwei XU, Xin LIU(), Zexiang SHEN, Minghua CHEN()
Received:
2024-05-27
Revised:
2024-06-13
Online:
2024-11-28
Published:
2024-11-27
Contact:
Xin LIU, Minghua CHEN
E-mail:chen.zhen@hrbust.edu.cn;liu.xin@hrbust.edu.cn;mhchen@hrbust.edu.cn
CLC Number:
Zhen CHEN, Xian'ao LI, Yiwei XU, Xin LIU, Zexiang SHEN, Minghua CHEN. Current research status and future prospects of the synthesis and modification routes for LATP and LAGP solid electrolytes[J]. Energy Storage Science and Technology, 2024, 13(11): 3826-3855.
Fig.3
(a) Difference Fourier maps in the xy plane at z=0 of ND diffraction data of LTP and LATP at different temperatures (displayed in blue for negative scattering length density and orange for positive scattering length density)[37]; (b), (c) Bond valence mismatch and negative nuclear density maps reconstructed by the maximum entropy method for LATP, revealing possible transport pathways[39]"
Fig.4
(a) The minimum migration energy path calculated by NEB-DFT[47]; (b) Migration energies of single-ion migration and cooperative migration in LATP calculated using DFT[44]; (c) Energy distribution diagram and schematic diagram of lithium-ion cooperative migration pathways in LATP-0.16 and LATP-0.50 (the inset is a schematic representation of the intermediate state along the migration path)[48]; (d) A heatmap predicted by DFT for the ease of NASICON synthesis, where the color of the block indicates the number of stable compounds containing a specific metal pair[49]"
Fig.6
(a) Photograph of the quenched glass-ceramic[57]; (b) Microstructure of microcracks on the surface of the ceramic sheet[57]; (c) Schematic diagram of the microcrack formation process[57]; (d) Ion conductivity distribution of the samples synthesized by the melt-quenching method and the sol-gel method as precursors[59]; (e) XRD patterns of samples sintered at 850 °C for 2 hours using a-LATP and c-LATP as precursors[60]; (f) Particle size distribution of the precursors obtained by the sol-gel method and the solid-phase synthesis method[61]"
Fig.7
(a) Process flowchart of the sol-gel synthesis method for LATP[71]; (b) XRD patterns of LATP synthesized under the same polymer concentration but different pH values[68]; (c) XRD patterns of LATP synthesized under the same pH value but different polymer concentrations[68]; (d) Comparison of the traditional calcination method and the improved carbon framework calcination method for sol-gel synthesis[69]; (e) Phase diagram of ionic conductivity distribution of sintered LATP under different sintering temperatures and holding times when the precursor is in the condition of excess phosphoric acid (LATPex)[70]"
Fig.8
(a) Schematic diagram of the coprecipitation method for the synthesis of LATP[77]; (b) FTIR spectra of LATP powders at different preheating temperatures[77]; (c) XRD patterns of LATP particles calcined at 500—1000 ℃ for 6 h[77]; (d) XRD patterns showing the effect of increased pH on the residual GeO2 in the coprecipitation method[76]"
Fig.9
(a) Flowchart of hydrothermal synthesis of LATP[81]; (b) Schematic diagram of the hydrothermal synthesis of rhombic intermediate products (Al-doped NH4TiOPO4 and Li3PO4)[82]; (c) Structure of LATP obtained through hydrothermal synthesis and lithium-ion dynamics information derived from nuclear magnetic resonance[40]"
Table 1
The advantages, disadvantages and application prospects of common synthesis methods"
合成方法 | 特点 | 应用前景 |
---|---|---|
熔融淬火法 | 工艺简单、致密度高、原料成本低且安全、能耗大、粉末粒径较大、易产生二次相、不易扩大规模 | 性能要求不高,但对成本敏感的领域 |
高温固相反应法 | 工艺简单、致密度高、原料成本低且安全、能耗适中、粉末粒径适中、相纯度适中、可实现量产 | 性能与成本折中的领域,市场前景广 |
溶胶-凝胶法 | 工艺复杂、致密度适中、原料成本昂贵且有毒、能耗低、粉末粒径小、相纯度高、量产难度大 | 生产成本较高,生产过程污染环境,大规模量产难度大 |
共沉淀法 | 工艺相对简单、致密度适中、原料成本适中且安全、能耗低、粉末粒径小、相纯度较高、可实现量产 | 性能与成本折中的领域,市场前景广 |
水热合成法 | 工艺相对简单、生产环境要求高、致密度适中、原料成本适中、能耗适中、粉末粒径小、相纯度高、量产难度大 | 对材料性能要求高,小规模生产或实验室研究 |
Fig.10
(a) Flowchart of the process principle for synthesizing LATP via template method[88]; (b) Schematic diagram of the process for synthesizing LATP via direct ink writing method[89]; (c) Dark-field STEM images of LATP after deposition (AD) and annealing (A) synthesized via PLD method[90]; (d) Schematic diagram of the process principle for synthesizing LAGP via aerosol deposition method[92]"
Fig.11
(a) Relationship between room temperature DC conductivity and relative crystal content[55]; (b) XRD patterns of LATP sintered at different temperatures[69]; (c) XRD patterns of LAGP sintered at different temperatures[71]; (d) Electrolyte impedance plots of LATP sintered at 950 ℃ for different holding times[66]"
Fig.12
SEM images of sintering by (a) SPS (650 ℃, 8 min) and (b) traditional muffle furnace (850 ℃, 6 h)[108]; (c) Schematic diagram of FAST sintering technology equipment[101]; (d) Schematic diagram of UPS technology[102]; (e) Microwave-assisted sintering process and microstructure of sintered samples[105]; (f) Schematic diagram of the cold sintering process[58]"
Table 2
Common synthesis methods and performance parameters of synthesized samples"
电解质 | 合成方法 | 烧结工艺 | 压片压力/MPa | 密度 /(g/cm3) | 离子电导率 /(mS/cm) | 活化能 /eV | 参考文献 |
---|---|---|---|---|---|---|---|
LAGP | 熔融淬火 | 800 ℃; 5 h | 20 | 3.427 | 0.164 | 0.3 | [ |
LATP | 熔融淬火 | 850 ℃; 6 h | — | — | 约0.1 | 0.325 | [ |
LAGP | 熔融淬火 | 800 ℃; 6 h | 500 | — | — | — | [ |
LATP | 熔融淬火 | 1000 ℃;SPS 5 min | 50 | 2.819 | 0.12 | — | [ |
溶胶凝胶 | 850 ℃;SPS 5 min | 50 | 2.796 | 0.21 | — | ||
混合前驱体 | 1000 ℃;SPS 5 min | 50 | 2.921 | 1 | — | ||
LATP | 熔融淬火 | 1000 ℃; SPS 5 min | 50 | 2.819 | 0.12 | — | [ |
LATP | 熔融淬火 | 900 ℃; SPS 10 min | 70 | 2.842 | 0.076 | — | [ |
LATP | 溶胶凝胶 | 650 ℃; SPS 8 min | 45 | 2.94 | 1.12 | 0.25 | [ |
850 ℃;6 h | 200 | 2.793 | 0.36 | 0.31 | |||
LATP | 固相反应法 | UHS 20A 100 s | 200 | 2.652 | 0.467 | 0.249 | [ |
900 ℃; 6 h | 2.511 | 0.389 | 0.303 | ||||
LAGP | 固相反应法 | UHS 19A 160 s | 500 | 3.37 | 0.172 | — | [ |
850 ℃; 12 h | 3.326 | 0.161 | — | ||||
LAGP | 熔融淬火 | 冷烧结120 ℃; 20 min 650 ℃; 5 min | 400 | 2.71 | 0.0549 | 0.4 | [ |
LAGP | 固相反应法 | 900 ℃; 6 h | — | — | 0.39 | — | [ |
LATP | 固相反应法 | 900 ℃; 10 h | — | — | 0.15 | 0.36 | [ |
LATP | 固相反应法 | 950 ℃; 6 h | — | 2.824 | 0.344 | — | [ |
LATP | 固相反应法 | 750 ℃ | 400 | 2.646 | 0.667 | — | [ |
LATP | 固相反应法 | 950 ℃; 3 h | 200 | 2.705 | 0.215 | 0.398 | [ |
溶胶凝胶 | 2.793 | 0.413 | 0.364 | ||||
LATP | 溶胶凝胶 | 950 ℃; 6 h | 200 | 2.852 | 2.09 | 0.29 | [ |
LAGP | 溶胶凝胶 | 900 ℃; 8 h | — | — | 0.418 | 0.3 | [ |
LATP | 溶液辅助固相反应法 | 900℃; 5h | 75 | 2.626 | 0.62 | 0.33 | [ |
LATP | 共沉淀法 | 900 ℃; 6 h | 200 | 2.811 | 0.219 | 0.32 | [ |
LAGP | 共沉淀法 | 950 ℃; 10 h | 6 | — | 0.587 | — | [ |
LATP | 共沉淀法 | 1050 ℃; 6 h | — | — | 0.2 | 0.28 | [ |
LATP | 共沉淀法 | 900 ℃; 6 h | 200 | 2.852 | 2.19 | 0.35 | [ |
LATP | 水热合成 | 900 ℃; 6 h | — | — | 0.265 | 0.216 | [ |
LATP | 水热合成 | 1000 ℃; 12 h | 20 | 2.86 | 0.481 | 0.3 | [ |
LATP | 水热合成 | 900 ℃; 3 h 1100 ℃; 3 h | — | 2.913 | 2.7 | 0.17 | [ |
LATP | 水热合成 | 850 ℃; 2 h | — | — | 0.48 | — | [ |
Fig.13
(a) Schematic diagram of defect principles at grain boundaries of LASTP and LAYTP at low temperatures[112]; (b) Ionic conductivity plot of Li1.3Al0.3-x R x Ti1.7(PO4)3 with x=0.03 doping of Sc3+, Y3+, and Ga3+ at 423 K[113]; (c) Schematic diagram of the altered Li diffusion channels after the introduction of Mg in LAGP[117]; (d) Schematic diagram of the mechanism of Ta-doped LATP to slow down the reduction of Ti by Li[124]; (e) XPS characterization of the valence state ratio of Ti on the surface of LATP samples doped with different amounts of silicon after contact with Li[126]; (f) Schematic diagram of the principle of doping Nb at the P site in LATP and LAGP; (g) Comparison of bond lengths between PO4 and PO3S after sulfur doping in LATP (sulfur, phosphorus, and oxygen are represented by green, gray, and red, respectively) [134]; (h), (i) Schematic diagrams of changes in Raman spectral peaks of PO4 groups and partial bond lengths after Cl doping in LATP[136]; (j) XRD peaks of F-doped LATP, showing a shift to a smaller angle around 2θ=24.5° [138]; (k) Structural model of F-doped LATP and energy barrier diagrams for Li+ migration to the 36f position before and after doping[139]"
Fig.14
(a) Training data set diagram for Li-Zr-Cl neural network potential training (a total of 34,648 configurations), with the x-axis representing the distance-weighted Steinhart order parameter (OP) and the y-axis representing the density of each configuration[155]; (b) Schematic diagram of the solid-state electrolyte screening process, which screens 452 solid-state electrolyte candidates from 19,480 lithium-containing materials[156]; (c) Uncertainty prediction phase diagram based on Gaussian regression with UCB model in the search space, showing the ionic conductivity (S/cm) of LATP, where higher values correspond to brighter colors[17]; (d) Schematic diagram of the machine learning-assisted process for preparing high-performance solid-state electrolyte films[157]"
1 | AGREEMENT P. UNFCCC, Adoption of the Paris agreement. COP[C]. 25th session Paris, 2015, 30: 1-25. |
2 | WU S, ZHANG X, WANG R Z, et al. Progress and perspectives of liquid metal batteries[J]. Energy Storage Materials, 2023, 57: 205-227. DOI: 10.1016/j.ensm.2023.02.021. |
3 | WU F, CHEN N, CHEN R J, et al. Self-regulative nanogelator solid electrolyte: A new option to improve the safety of lithium battery[J]. Advanced Science, 2016, 3(1): 1500306. DOI: 10. 1002/advs.201500306. |
4 | LIU X H, ZHANG L S, YU H Q, et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle[J]. Advanced Energy Materials, 2022, 12(33): 2200889. DOI: 10.1002/aenm.202200889. |
5 | AMICI J, ASINARI P, AYERBE E, et al. A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+[J]. Advanced Energy Materials, 2022, 12(17): 2102785. DOI: 10.1002/aenm.202102785. |
6 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162. DOI: 10.1021/acs.chemrev.5b00563. |
7 | MILLER T F, WANG Z G, COATES G W, et al. Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries[J]. Accounts of Chemical Research, 2017, 50(3): 590-593. DOI: 10.1021/acs.accounts.6b00568. |
8 | ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. DOI: 10.1039/d0cs00305k. |
9 | WAN J, XIE J, MACKANIC D G, et al. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16. DOI: 10.1016/j.mtnano.2018.12.003. |
10 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103. DOI: 10.1038/natrevmats.2016.103. |
11 | ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G, et al. A wide-ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837. DOI: 10.1007/s10853 -011-5302-5. |
12 | DEWEES R, WANG H. Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes[J]. ChemSusChem, 2019, 12(16): 3713-3725. DOI: 10.1002/cssc.201900725. |
13 | JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. 2013, 1(1): 011002. DOI: 10.1063/1.4812323. |
14 | RUSSELL S J, NORVIG P. Artificial intelligence: A modern approach,4 th US ed.[M].US, Pearson Education Inc. |
15 | OUYANG B, WANG J Y, HE T J, et al. Synthetic accessibility and stability rules of NASICONs[J]. Nature Communications, 2021, 12: 5752. DOI: 10.1038/s41467-021-26006-3. |
16 | COREY E J, WIPKE W T. Computer-assisted design of complex organic syntheses[J]. Science, 1969, 166(3902): 178-192. DOI: 10.1126/science.166.3902.178. |
17 | ZHAO Y H, SCHIFFMANN N, KOEPPE A, et al. Machine learning assisted design of experiments for solid state electrolyte lithium aluminum titanium phosphate[J]. Frontiers in Materials, 2022, 9: 30. DOI: 10.3389/fmats.2022.821817. |
18 | VASYLENKO A, GAMON J, DUFF B B, et al. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry[J]. Nature Communications, 2021, 12(1): 5561. DOI: 10.1038/s41467-021-25343-7. |
19 | AHMAD Z, XIE T, MAHESHWARI C, et al. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes[J]. ACS Central Science, 2018, 4(8): 996-1006. DOI: 10.1021/acscentsci.8b00229. |
20 | SATPATI A, KANDREGULA G R, RAMANUJAM K. Machine learning enabled high-throughput screening of inorganic solid electrolytes for regulating dendritic growth in lithium metal anodes[J]. New Journal of Chemistry, 2022, 46(29): 14227-14238. DOI: 10.1039/D2NJ01827F. |
21 | GÓMEZ-BOMBARELLI R, AGUILERA-IPARRAGUIRRE J, HIRZEL T D, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach[J]. Nature Materials, 2016, 15: 1120-1127. DOI: 10.1038/nmat4717. |
22 | LU Y, CHEN X, ZHAO C Z, et al. Machine Learning towards Screening Solid-state Lithium Ion Conductors[J]. Chinese Journal of Structural Chemistry, 2020, 39(1): 8-10, 1. |
23 | WINTER G, GÓMEZ-BOMBARELLI R. Simulations with machine learning potentials identify the ion conduction mechanism mediating non-Arrhenius behavior in LGPS[J]. Journal of Physics: Energy, 2023, 5(2): 024004. DOI: 10.1088/2515-7655/acbbef. |
24 | 陈翔, 富忠恒, 高宇辰, 等. 机器学习在锂电池固态电解质研究中的应用[J]. 硅酸盐学报, 2023, 51(2): 488-498. DOI: 10.14062/j.issn.0454-5648.20220818. |
CHEN X, FU Z H, GAO Y C, et al. Machine learning in lithium battery solid-state electrolytes[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 488-498. DOI: 10.14062/j.issn.0454-5648.20220818. | |
25 | YANG K, CHEN L K, MA J B, et al. Progress and perspective of Li1 + xAlxTi2- x(PO4)3 ceramic electrolyte in lithium batteries[J]. InfoMat, 2021, 3(11): 1195-1217. DOI: 10.1002/inf2.12222. |
26 | XIAO W, WANG J Y, FAN L L, et al. Recent advances in Li1+ xAlxTi2- x(PO4)3 solid-state electrolyte for safe lithium batteries[J]. Energy Storage Materials, 2019, 19: 379-400. DOI: 10.1016/j.ensm.2018.10.012. |
27 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. DOI: 10.1016/0025-5408(76)90077-5. |
28 | MOUAHID F E, ZAHIR M, MALDONADO-MANSO P, et al. Na-Li exchange of Na1+ xTi2- xAlx(PO4)3 (0.6 ≤x≤0.9) NASICON series: A rietveld and impedance study[J].Journal of Materials Chemistry, 2001, 11(12): 3258-3263. DOI: 10.1039/B102918P. |
29 | PERSHINA S V, PANKRATOV A A, VOVKOTRUB E G, et al. Promising high-conductivity Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes: The effect of crystallization temperature on the microstructure and transport properties[J]. Ionics, 2019, 25(10): 4713-4725. DOI: 10.1007/s11581-019-03021-5. |
30 | FU J. Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5[J]. Solid State Ionics, 1997, 104(3/4): 191-194. DOI: 10.1016/S0167-2738(97)00434-7. |
31 | ARBI K, LAZARRAGA M G, BEN HASSEN CHEHIMI D, et al. Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R=Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy[J]. Chemistry of Materials, 2004, 16(2): 255-262. DOI: 10.1021/cm030422i. |
32 | ARBI K, TABELLOUT M, LAZARRAGA M G, et al. Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3: A 7Li NMR and electric impedance study[J]. Physical Review B, 2005, 72(9): 094302. DOI: 10.1103/physrevb.72.094302. |
33 | ARBI K, HOELZEL M, KUHN A, et al. Structural factors that enhance lithium mobility in fast-ion Li1+ xTi2– xAlx(PO4)3 (0≤x≤0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K[J]. Inorganic Chemistry, 2013, 52(16): 9290-9296. DOI: 10.1021/ic400577v. |
34 | KUO P H, DU J C. Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+ xAlxGe2– x(PO4)3 solid-state electrolytes[J]. The Journal of Physical Chemistry C, 2019, 123(45): 27385-27398. DOI: 10.1021/acs.jpcc.9b08390. |
35 | ARBI K, ROJO J M, SANZ J. Lithium mobility in titanium based Nasicon Li1+ xTi2- xAlx(PO4)3 and LiTi2- xZrx(PO4)3 materials followed by NMR and impedance spectroscopy[J]. Journal of the European Ceramic Society, 2007, 27(13/14/15): 4215-4218. DOI: 10.1016/j.jeurceramsoc.2007.02.118. |
36 | ARBI K, BUCHELI W, JIMÉNEZ R, et al. High lithium ion conducting solid electrolytes based on NASICON Li1+ x Alx M2-x (PO4)3 materials (M=Ti, Ge and 0≤x≤0.5)[J]. Journal of the European Ceramic Society, 2015, 35(5): 1477-1484. DOI: 10.1016/j.jeurceramsoc.2014.11.023. |
37 | PÉREZ-ESTÉBANEZ M, ISASI-MARÍN J, TÖBBENS D M, et al. A systematic study of Nasicon-type Li1+ xMxTi2- x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy[J]. Solid State Ionics, 2014, 266: 1-8. DOI: 10.1016/j.ssi. 2014.07.018. |
38 | HAYAMIZU K, HAISHI T. Ceramic-glass pellet thickness and Li diffusion in NASICON-type LAGP (Li1.5Al0.5Ge1.5(PO4)3) studied by pulsed field gradient NMR spectroscopy[J]. Solid State Ionics, 2022, 380: 115924. DOI: 10.1016/j.ssi.2022.115924. |
39 | MONCHAK M, HUPFER T, SENYSHYN A, et al. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor[J]. Inorganic Chemistry, 2016, 55(6): 2941-2945. DOI: 10.1021/acs.inorgchem.5b02821. |
40 | PENG C, KAMIIKE Y, LIANG Y J, et al. Thin-film NASICON-type Li1+ xAlxTi2– x(PO4)3 solid electrolyte directly fabricated on a graphite substrate with a hydrothermal method based on different Al sources[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10751-10762. DOI: 10.1021/acssuschemeng.9b01435. |
41 | GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials[J]. Journal of Physics Condensed Matter, 2009, 21(39): 395502. DOI: 10.1088/0953-8984/21/39/395502. |
42 | PFALZGRAF D, MUTTER D, URBAN D F. Atomistic analysis of Li migration in Li1+ xAlxTi2- x(PO4)3 (LATP) solid electrolytes[J]. Solid State Ionics, 2021, 359: 115521. DOI: 10.1016/j.ssi. 2020.115521. |
43 | HE X F, BAI Q, LIU Y S, et al. Crystal structural framework of lithium super-ionic conductors[J]. Advanced Energy Materials, 2019, 9(43): 1902078. DOI: 10.1002/aenm.201902078. |
44 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: 15893. DOI: 10.1038/ncomms15893. |
45 | HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. 2000, 113(22): 9901-9904. DOI: 10.1063/1.1329672. |
46 | KANG J, CHUNG H, DOH C, et al. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte[J]. Journal of Power Sources, 2015, 293: 11-16. DOI: 10.1016/j.jpowsour.2015.05.060. |
47 | LANG B, ZIEBARTH B, ELSÄSSER C. Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: A first-principles study[J]. Chemistry of Materials, 2015, 27(14): 5040-5048. DOI: 10.1021/acs.chemmater.5b01582. |
48 | ZHANG B K, LIN Z, DONG H F, et al. Revealing cooperative Li-ion migration in Li1+ xAlxTi2- x(PO4)3 solid state electrolytes with high Al doping[J]. Journal of Materials Chemistry A, 2020, 8(1): 342-348. DOI: 10.1039/C9TA09770H. |
49 | WANG J Y, HE T J, YANG X C, et al. Design principles for NASICON super-ionic conductors[J]. Nature Communications, 2023, 14: 5210. DOI: 10.1038/s41467-023-40669-0. |
50 | WU M S, XU B, OUYANG C Y. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries[J]. Chinese Physics B, 2016, 25(1): 018206. DOI: 10.1088/1674-1056/25/1/018206. |
51 | CASE D, MCSLOY A J, SHARPE R, et al. Structure and ion transport of lithium-rich Li1+ xAlxTi2- x(PO4)3 with 0.3≤x≤0.5: A combined computational and experimental study[J]. Solid State Ionics, 2020, 346: 115192. DOI: 10.1016/j.ssi.2019.115192. |
52 | MENG Y S, ARROYO-DE DOMPABLO M E. First principles computational materials design for energy storage materials in lithium ion batteries[J]. Energy & Environmental Science, 2009, 2(6): 589-609. DOI: 10.1039/B901825E. |
53 | WU P F, ZHOU W W, SU X, et al. Recent advances in conduction mechanisms, synthesis methods, and improvement strategies for Li1+ xAlxTi2– x(PO4)3 solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2023, 13(4): 2203440. DOI: 10.1002/aenm.202203440. |
54 | YAN B G, ZHU Y Q, PAN F, et al. Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing[J]. Solid State Ionics, 2015, 278: 65-68. DOI: 10.1016/j.ssi.2015.05.020. |
55 | SOMAN S, IWAI Y, KAWAMURA J, et al. Crystalline phase content and ionic conductivity correlation in LATP glass-ceramic[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1761-1766. DOI: 10.1007/s10008-011-1592-4. |
56 | CHUNG H, KANG B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell[J]. Chemistry of Materials, 2017, 29(20): 8611-8619. DOI: 10.1021/acs.chemmater.7b02301. |
57 | WAETZIG K, ROST A, LANGKLOTZ U, et al. An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics[J]. Journal of the European Ceramic Society, 2016, 36(8): 1995-2001. DOI: 10.1016/j.jeurceramsoc.2016.02.042. |
58 | LIU Y L, LIU J R, SUN Q, et al. Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27890-27896. DOI: 10.1021/acsami.9b08132. |
59 | WAETZIG K, ROST A, HEUBNER C, et al. Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity[J]. Journal of Alloys and Compounds, 2020, 818: 153237. DOI: 10.1016/j.jallcom. 2019. 153237. |
60 | MORIMOTO H, AWANO H, TERASHIMA J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+ x Alx Ti2- x(PO4)3 (x=0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013, 240: 636-643. DOI: 10.1016/j.jpowsour.2013.05.039. |
61 | REN Y Q, DENG H, ZHAO H, et al. A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte for lithium-oxygen batteries[J]. Ionics, 2020, 26(12): 6049-6056. DOI: 10.1007/s11581-020-03781-5. |
62 | SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1/2): 1-184. DOI: 10. 1016/S0079-6425(99)00010-9. |
63 | WANG S, WANG J, LIU J J, et al. Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium-air batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21248-21254. DOI: 10.1039/C8TA08095J. |
64 | SUN C Z, HUANG X, JIN J, et al. An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries[J]. Journal of Power Sources, 2018, 377: 36-43. DOI: 10.1016/j.jpowsour.2017.11.063. |
65 | WANG Q S, JIN J, WU X W, et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21225-21229. DOI: 10.1039/c4cp03694h. |
66 | HE Y C, LI B, DUAN H, et al. Nano-grass like AlOOH as an Al source for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with high ionic conductivity[J]. Ceramics International, 2020, 46(9): 14143-14149. DOI: 10.1016/j.ceramint.2020.02.221. |
67 | LUO C W, ZHAO G Q, ZHANG M Y, et al. Facile route to synthesize a highly sinterable Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. ACS Applied Materials & Interfaces, 2024, 16(3): 3289-3301. DOI: 10.1021/acsami.3c14776. |
68 | XU X X, WEN Z Y, WU J G, et al. Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted Sol-gel method[J]. Solid State Ionics, 2007, 178(1/2): 29-34. DOI: 10.1016/j.ssi. 2006. 11.009. |
69 | LIU X G, TAN J, FU J, et al. Facile synthesis of nanosized lithium-ion-conducting solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 and its mechanical nanocomposites with LiMn2O4 for enhanced cyclic performance in lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11696-11703. DOI: 10.1021/acsami.6b16233. |
70 | SCHIFFMANN N, BUCHARSKY E C, SCHELL K G, et al. Upscaling of LATP synthesis: Stoichiometric screening of phase purity and microstructure to ionic conductivity maps[J]. Ionics, 2021, 27(5): 2017-2025. DOI: 10.1007/s11581-021-03961-x. |
71 | SUN Z J, LIU L, LU Y X, et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 402-408. DOI: 10.1016/j.jeurceramsoc. 2018.09.025. |
72 | KOTOBUKI M, KOISHI M. Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte[J]. Ceramics International, 2015, 41(7): 8562-8567. DOI: 10.1016/j.ceramint.2015.03.064. |
73 | ZHU Y Q, WU T, SUN J G, et al. Highly conductive lithium aluminum germanium phosphate solid electrolyte prepared by Sol-gel method and hot-pressing[J]. Solid State Ionics, 2020, 350: 115320. DOI: 10.1016/j.ssi.2020.115320. |
74 | WEISS M, WEBER D A, SENYSHYN A, et al. Correlating transport and structural properties in Li1+ xAlxGe2– x(PO4)3 (LAGP) prepared from aqueous solution[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10935-10944. DOI: 10.1021/acsami. 8b00842. |
75 | BI K, ZHAO S X, HUANG C, et al. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O[J]. Journal of Power Sources, 2018, 389: 240-248. DOI: 10.1016/j.jpowsour.2018.03.071. |
76 | JI F J, XIAO S Y, CHENG J, et al. Low-cost and facile synthesis of LAGP solid state electrolyte via a co-precipitation method[J]. 2022, 121(2): 023904. DOI: 10.1063/5.0098362. |
77 | YAO Z R, ZHU K J, ZHANG J, et al. Co-precipitation synthesis and electrochemical properties of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(20): 24834-24844. DOI: 10. 1007/s10854-021-06943-x. |
78 | HUANG L Z, WEN Z Y, WU M F, et al. Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method[J]. Journal of Power Sources, 2011, 196(16): 6943-6946. DOI: 10.1016/j.jpowsour.2010.11.140. |
79 | KOTOBUKI M, KOISHI M. Effect of Li salts on the properties of Li1.5Al0.5Ti1.5(PO4)3 solid electrolytes prepared by the co-precipitation method[J]. Journal of Asian Ceramic Societies, 2019, 7(4): 426-433. DOI: 10.1080/21870764.2019.1652971. |
80 | KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes via the co-precipitation method[J]. Journal of Asian Ceramic Societies, 2019, 7(4): 551-557. DOI: 10.1080/21870764.2019.1693680. |
81 | KIM K M, SHIN D O, LEE Y G. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+ x Alx Ti2- x (PO4)3 solid electrolytes[J]. Electrochimica Acta, 2015, 176: 1364-1373. DOI: 10.1016/j.electacta.2015.07.170. |
82 | HE S N, XU Y L, ZHANG B F, et al. Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity[J]. Chemical Engineering Journal, 2018, 345: 483-491. DOI: 10.1016/j.cej.2018.03.151. |
83 | YEN P Y, LEE M L, GREGORY D H, et al. Optimization of sintering process on Li1+ xAlxTi2- x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries[J]. Ceramics International, 2020, 46(12): 20529-20536. DOI: 10.1016/j.ceramint.2020.05.162. |
84 | HUANG Y, JIANG Y, ZHOU Y X, et al. Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes[J]. ChemElectroChem, 2019, 6(24): 6016-6026. DOI: 10.1002/celc.201901687. |
85 | WANG Z Y, KOU Z Y, MIAO C, et al. Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1.3Al0.3Ti1.7(PO4)3 particles[J]. Ceramics International, 2019, 45(11): 14469-14473. DOI: 10.1016/j.ceramint.2019.04.192. |
86 | KOU Z Y, MIAO C, MEI P, et al. Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH values[J]. Ceramics International, 2020, 46(7): 9629-9636. DOI: 10.1016/j.ceramint.2019.12.229. |
87 | LI J Q, LIU C J, MIAO C, et al. Enhanced ionic conductivity and electrochemical stability of Indium doping Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries[J]. Ionics, 2022, 28(1): 63-72. DOI: 10.1007/s11581-021-04310-8. |
88 | LU X J, HAI J K, ZHANG F, et al. Preparation and infiltration of NASICON-type solid electrolytes with microporous channels[J]. Ceramics International, 2022, 48(2): 2203-2211. DOI: 10.1016/j.ceramint.2021.09.312. |
89 | LIU Z X, TIAN X C, LIU M, et al. Direct ink writing of Li1.3Al0.3Ti1.7(PO4)3-based solid-state electrolytes with customized shapes and remarkable electrochemical behaviors[J]. Small, 2021, 17(6): 2002866. DOI: 10.1002/smll.202002866. |
90 | SILLER V, MORATA A, EROLES M N, et al. High performance LATP thin film electrolytes for all-solid-state microbattery applications[J]. Journal of Materials Chemistry A, 2021, 9(33): 17760-17769. DOI: 10.1039/D1TA02991F. |
91 | HOFMANN P, WALTHER F, ROHNKE M, et al. LATP and LiCoPO4 thin film preparation-Illustrating interfacial issues on the way to all-phosphate SSBs[J]. Solid State Ionics, 2019, 342: 115054. DOI: 10.1016/j.ssi.2019.115054. |
92 | INADA R, ISHIDA K I, TOJO M, et al. Properties of aerosol deposited NASICON-type Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte thin films[J]. Ceramics International, 2015, 41(9): 11136-11142. DOI: 10.1016/j.ceramint.2015.05.062. |
93 | ROSEN M, HECKER P, MANN M, et al. Reducing the environmental footprint of solid-electrolytes - A green synthesis route for LATP[J]. Green Chemistry, 2024, 26(5): 2712-2720. DOI: 10.1039/d3gc03293k. |
94 | JACKMAN S D, CUTLER R A. Effect of microcracking on ionic conductivity in LATP[J]. Journal of Power Sources, 2012, 218: 65-72. DOI: 10.1016/j.jpowsour.2012.06.081. |
95 | TEZUKA T, INAGAKI Y, KODAMA S, et al. Spark plasma sintering and ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 fine particles synthesized by glass crystallization[J]. Powder Technology, 2023, 429: 118870. DOI: 10.1016/j.powtec.2023.118870. |
96 | CHANG C M, LEE Y I, HONG S H, et al. Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes[J]. Journal of the American Ceramic Society, 2005, 88(7): 1803-1807. DOI: 10.1111/j.1551-2916.2005.00246.x. |
97 | ZHU H Z, LIU J. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond[J]. Journal of Power Sources, 2018, 391: 10-25. DOI: 10.1016/j.jpowsour. 2018.04.054. |
98 | MARTÍNEZ-CHAPARRO S, KOBYLIANSKA S, SOBRADOS I, et al. Enhanced "overall" ionic conductivity in Li1+ xAlxTi2- x(PO4)3 (0.3≤x≤0.7) ceramics prepared from Sol-gel powders by spark plasma sintering[J]. Journal of the European Ceramic Society, 2022, 42(10): 4248-4258. DOI: 10.1016/j.jeurceramsoc. 2022. 04.009. |
99 | KALI R, MUKHOPADHYAY A. Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective[J]. Journal of Power Sources, 2014, 247: 920-931. DOI: 10.1016/j.jpowsour. 2013. 09.010. |
100 | RAJ R, COLOGNA M, FRANCIS J S C. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics[J]. Journal of the American Ceramic Society, 2011, 94(7): 1941-1965. DOI: 10.1111/j.1551-2916.2011.04652.x. |
101 | ROSENBERGER A, GAO Y, STANCIU L. Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte[J]. Solid State Ionics, 2015, 278: 217-221. DOI: 10.1016/j.ssi. 2015.06.012. |
102 | CHEN S J, NIE L, HU X C, et al. Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries[J]. Advanced Materials, 2022, 34(33): 2200430. DOI: 10.1002/adma. 202200430. |
103 | WU J H, LIN Y, KERMANI M, et al. Ultra-fast high temperature sintering (UHS) of Li1.5Al0.5Ge1.5P3O12 electrolyte: A rationalization of the heating schedule[J]. Ceramics International, 2022, 48(5): 6356-6362. DOI: 10.1016/j.ceramint. 2021.11.178. |
104 | LIN Y, LUO N, QUATTROCCHI E, et al. Ultrafast high-temperature sintering (UHS) of Li1.3Al0.3Ti1.7(PO4)3[J]. Ceramics International, 2021, 47(15): 21982-21987. DOI: 10.1016/j.ceramint.2021.04.216. |
105 | HALLOPEAU L, BREGIROUX D, ROUSSE G, et al. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. Journal of Power Sources, 2018, 378: 48-52. DOI: 10.1016/j.jpowsour.2017.12.021. |
106 | GUO J, GUO H Z, BAKER A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie, 2016, 128(38): 11629-11633. DOI: 10.1002/ange.201605443. |
107 | BERBANO S S, GUO J, GUO H Z, et al. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte[J]. Journal of the American Ceramic Society, 2017, 100(5): 2123-2135. DOI: 10.1111/jace.14727. |
108 | XU X X, WEN Z Y, YANG X L, et al. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique[J]. Materials Research Bulletin, 2008, 43(8/9): 2334-2341. DOI: 10.1016/j.materresbull.2007.08.007. |
109 | AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J]. Journal of the Electrochemical Society, 1990, 137(4): 1023-1027. DOI: 10.1149/1.2086597. |
110 | SUBRAMANIAN M A, SUBRAMANIAN R, CLEARFIELD A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B=Ti, Zr and Hf)[J]. Solid State Ionics, 1986, 18: 562-569. DOI: 10.1016/0167-2738(86)90179-7. |
111 | KAZAKEVIČIUS E, ŠALKUS T, SELSKIS A, et al. Preparation and characterization of Li1+ xAlyScx-yTi2- x(PO4)3 (x=0.3, y=0.1, 0.15, 0.2) ceramics[J]. Solid State Ionics, 2011, 188(1): 73-77. DOI: 10.1016/j.ssi.2010.11.029. |
112 | KOTHARI D H, KANCHAN D K. Inter-grain Li+ conduction in Sc and Y doped LATP compounds[J]. Physica B: Condensed Matter, 2022, 627: 413599. DOI: 10.1016/j.physb.2021.413599. |
113 | KOTHARI D H, KANCHAN D K. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7 (PO4)3 (LATP) system on Li+ ion conductivity[J]. Physica B: Condensed Matter, 2016, 501: 90-94. DOI: 10.1016/j.physb.2016.08.020. |
114 | ZHANG P, MATSUI M, HIRANO A, et al. Water-stable lithium ion conducting solid electrolyte of the Li1.4Al0.4Ti1.6- xGex(PO4)3 system (x=0~1.0) with NASICON-type structure[J]. Solid State Ionics, 2013, 253: 175-180. DOI: 10.1016/j.ssi.2013.09.022. |
115 | SHANG X F, NEMORI H, MITSUOKA S, et al. High lithium-ion-conducting NASICON-type Li1+ xAlxGeyTi2– x– y(PO4)3 solid electrolyte[J]. Frontiers in Energy Research, 2016, 4: 12. DOI: 10.3389/fenrg.2016.00012. |
116 | LU X J, MENG F L, HUANG S, et al. Enhanced ionic conductivity and chemical stability of Li1.3Al0.3Ti1.7(PO4)3 by doping of WO3[J]. Materials Letters, 2018, 230: 177-179. DOI: 10.1016/j.matlet.2018.07.103. |
117 | NIKODIMOS Y, ABRHA L H, WELDEYOHANNES H H, et al. A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(48): 26055-26065. DOI: 10.1039/D0TA07807G. |
118 | WANG Q H, LIU L, ZHAO B J, et al. Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3[J]. Electrochimica Acta, 2021, 399: 139367. DOI: 10.1016/j.electacta.2021.139367. |
119 | LIU L, CUI X, JIE Z H, et al. Improved ion conductivity and interface characteristics of the Te-doped solid NASICON electrolyte Li1.5Al0.5Ge1.5(PO4)3 with graphite coating[J]. Journal of Power Sources, 2023, 575: 233137. DOI: 10.1016/j.jpowsour.2023.233137. |
120 | GAN H H, ZHU W, ZHANG L L, et al. Zr doped NASICON-type LATP glass-ceramic as a super-thin coating onto deoxidized carbon wrapped CNT-S cathode for lithium-sulphur battery[J]. Electrochimica Acta, 2022, 423: 140567. DOI: 10.1016/j.electacta.2022.140567. |
121 | MASHEKOVA A, BALTASH Y, YEGAMKULOV M, et al. Polycationic doping of the LATP ceramic electrolyte for Li-ion batteries[J]. RSC Advances, 2022, 12(46): 29595-29601. DOI: 10.1039/d2ra05782d. |
122 | STEGMAIER S, REUTER K, SCHEURER C. Exploiting nanoscale complexion in LATP solid-state electrolyte via interfacial Mg2+ doping[J]. Nanomaterials, 2022, 12(17): 2912. DOI: 10.3390/nano12172912. |
123 | XU A H, WANG R M, YAO M Q, et al. Electrochemical properties of an Sn-doped LATP ceramic electrolyte and its derived sandwich-structured composite solid electrolyte[J]. Nanomaterials, 2022, 12(12): 2082. DOI: 10.3390/nano12122082. |
124 | LEE J, LEE Y W, SHIN S, et al. Interface characteristics of Li1+ xAlxTi2- x(PO4)3 solid electrolyte with Ta-doping for all-solid-state batteries[J]. Inorganic Chemistry Communications, 2023, 154: 110895. DOI: 10.1016/j.inoche.2023.110895. |
125 | ZHU J P, XIANG Y X, ZHAO J, et al. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12[J]. Energy Storage Materials, 2022, 44: 190-196. DOI: 10.1016/j.ensm. 2021.10.003. |
126 | BALTASH Y, MASHEKOVA A, YEGAMKULOV M, et al. Silicon doping of LATP via molten flux method[J]. Ionics, 2023, 29(7): 2647-2655. DOI: 10.1007/s11581-023-05011-0. |
127 | ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378(6626): 1320-1324. DOI: 10.1126/science.abq1346. |
128 | BOTROS M, JANEK J. Embracing disorder in solid-state batteries[J]. Science, 2022, 378(6626): 1273-1274. DOI: 10.1126/science.adf3383. |
129 | CAI Z H, HUANG Y, ZHU W C, et al. Increase in ionic conductivity of NASICON-type solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 by Nb2O5 doping[J]. Solid State Ionics, 2020, 354: 115399. DOI: 10.1016/j.ssi.2020.115399. |
130 | ŚLUBOWSKA W, MONTAGNE L, LAFON O, et al. B2O3-doped LATP glass-ceramics studied by X-ray diffractometry and MAS NMR spectroscopy methods[J]. Nanomaterials, 2021, 11(2): 390. DOI: 10.3390/nano11020390. |
131 | SOWEIZY M, ZAHEDIFAR M, KARIMI M. Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9614-9621. DOI: 10.1007/s10854-020-03504-6. |
132 | FLATSCHER F, TODT J, BURGHAMMER M, et al. Deflecting dendrites by introducing compressive stress in Li7La3Zr2O12 using ion implantation[J]. Small, 2024, 20(12): 2307515. DOI: 10.1002/smll.202307515. |
133 | JAGAD H D, HARRIS S J, SHELDON B W, et al. Tradeoff between the ion exchange-induced residual stress and ion transport in solid electrolytes[J]. Chemistry of Materials, 2022, 34(19): 8694-8704. DOI: 10.1021/acs.chemmater.2c01806. |
134 | KıZıLASLAN A, KıRKBıNAR M, CETINKAYA T, et al. Sulfur doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier[J]. Physical Chemistry Chemical Physics, 2020, 22(30): 17221-17228. DOI: 10.1039/d0cp03442h. |
135 | AHMED D A, KıZıLASLAN A, ÇELIK M, et al. Sulfur-doped Li1.3Al0.3Ti1.7(PO4)3 as a solid electrolyte for all-solid-state batteries: First-principles calculations[J]. Electrochimica Acta, 2023, 463: 142872. DOI: 10.1016/j.electacta.2023.142872. |
136 | LI S Y, HUANG Z Y, XIAO Y G, et al. Chlorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries[J]. Materials Chemistry Frontiers, 2021, 5(14): 5336-5343. DOI: 10.1039/D1QM00241D. |
137 | KANG J R, GUO X, GU R, et al. Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping[J]. Nano Research, 2024, 17(3): 1465-1472. DOI: 10.1007/s12274-023-5890-9. |
138 | MIAO C, KOU Z Y, LI J Q, et al. LiF-doped Li1.3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries[J]. Ionics, 2022, 28(1): 73-83. DOI: 10.1007/s11581-021-04324-2. |
139 | YIN F S, ZHANG Z J, FANG Y L, et al. Insight into the mechanism of Li ion diffusion in fluorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries[J]. Journal of Energy Storage, 2023, 73: 108950. DOI: 10.1016/j.est. 2023. 108950. |
140 | BAI H N, HU J L, LI X G, et al. Influence of LiBO2 addition on the microstructure and lithium-ion conductivity of Li1+ xAlxTi2- x(PO4)3(x=0.3) ceramic electrolyte[J]. Ceramics International, 2018, 44(6): 6558-6563. DOI: 10.1016/j.ceramint.2018.01.058. |
141 | DAI L J, WANG J, SHI Z X, et al. Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte[J]. Ceramics International, 2021, 47(8): 11662-11667. DOI: 10.1016/j.ceramint.2021.01.004. |
142 | RUMPEL M, APPOLD L, BABER J, et al. Impact of the sintering additive Li3PO4 on the sintering behaviour, microstructure and electrical properties of a ceramic LATP electrolyte[J]. Materials Advances, 2022, 3(22): 8157-8167. DOI: 10.1039/D2MA00655C. |
143 | ZHAO X C, LUO Y S, ZHAO X J. Effect of TeO2 sintering aid on the microstructure and electrical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. Journal of Alloys and Compounds, 2022, 927: 167019. DOI: 10.1016/j.jallcom.2022.167019. |
144 | ZOU K, CAI Z H, KE X, et al. Electrochemical properties of LATP ceramic electrolyte doped with LiBiO3 sintering additive and its derived sandwich structure composite solid electrolyte[J]. Ionics, 2023, 29(7): 2665-2678. DOI: 10.1007/s11581-023-05023-w. |
145 | AGRAWAL A, CHOUDHARY A. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science[J]. 2016, 4(5): 053208. DOI: 10. 1063/1.4946894. |
146 | MURPHY K P. Machine learning: A probabilistic perspective[M].Baston : MIT press, 2012. |
147 | LIU Y, ZHAO T L, JU W W, et al. Materials discovery and design using machine learning[J]. Journal of Materiomics, 2017, 3(3): 159-177. DOI: 10.1016/j.jmat.2017.08.002. |
148 | WALTERS W P, STAHL M T, MURCKO M A. Virtual screening—An overview[J]. Drug Discovery Today, 1998, 3(4): 160-178. |
149 | TABOR D P, ROCH L M, SAIKIN S K, et al. Accelerating the discovery of materials for clean energy in the era of smart automation[J]. Nature Reviews Materials, 2018, 3: 5-20. DOI: 10.1038/s41578-018-0005-z. |
150 | ELRASHIDY A, DELLA-GIUSTINA J, YAN J A. Accelerated data-driven discovery and screening of two-dimensional magnets using graph neural networks[J]. The Journal of Physical Chemistry C, 2024, 128(14): 6007-6018. DOI: 10.1021/acs.jpcc.3c07246. |
151 | ZHONG C Q, ZHANG J Z, WANG Y L, et al. High-performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry[J]. InfoMat, 2024, 6(5): e12519. DOI: 10.1002/inf2.12519. |
152 | MAL S, SEAL G, SEN P. MagGen: A graph-aided deep generative model for inverse design of permanent magnets[J]. The Journal of Physical Chemistry Letters, 2024, 15(12): 3221-3228. DOI: 10.1021/acs.jpclett.4c00068. |
153 | BRADFORD G, LOPEZ J, RUZA J, et al. Chemistry-informed machine learning for polymer electrolyte discovery[J]. ACS Central Science, 2023, 9(2): 206-216. DOI: 10.1021/acscentsci.2c01123. |
154 | SUN J, KANG S, KIM J, et al. Accelerated discovery of novel garnet-type solid-state electrolyte candidates via machine learning[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5049-5057. DOI: 10.1021/acsami.2c15980. |
155 | LI F, CHENG X B, LU L L, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Letters, 2022, 22(6): 2461-2469. DOI: 10.1021/acs.nanolett.2c00187. |
156 | KANG S, KIM M, MIN K. Discovery of superionic solid-state electrolyte for Li-ion batteries via machine learning[J]. The Journal of Physical Chemistry C, 2023, 127(39): 19335-19343. DOI: 10.1021/acs.jpcc.3c02908. |
157 | CHEN Y T, DUQUESNOY M, TAN D H S, et al. Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning[J]. ACS Energy Letters, 2021: 1639-1648. DOI: 10.1021/acsenergylett.1c00332. |
158 | MAHBUB R, HUANG K, JENSEN Z, et al. Text mining for processing conditions of solid-state battery electrolytes[J]. Electrochemistry Communications, 2020, 121: 106860. DOI: 10.1016/j.elecom.2020.106860. |
159 | SHEN S P, TANG G, LI H J, et al. Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity[J]. Ceramics International, 2022, 48(24): 36961-36967. DOI: 10. 1016/j.ceramint.2022.08.264. |
160 | CHEN Z, LIANG H P, LYU Z Y, et al. Ultrathin single-ion conducting polymer enabling a stable Li|Li1.3Al0.3Ti1.7(PO4)3 interface[J]. Chemical Engineering Journal, 2023, 467: 143530. DOI: 10.1016/j.cej.2023.143530. |
161 | CAO D X, SUN X, WANG Y, et al. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries[J]. Energy Storage Materials, 2022, 48: 458-465. DOI: 10.1016/j.ensm.2022.03.012. |
162 | LI Z, LU Y, SU Q L, et al. High-power bipolar solid-state batteries enabled by in-situ-formed ionogels for vehicle applications[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5402-5413. DOI: 10.1021/acsami.1c22090. |
163 | LIU T F, YUAN Y F, TAO X Y, et al. Bipolar electrodes for next-generation rechargeable batteries[J]. Advanced Science, 2020, 7(17): 2001207. DOI: 10.1002/advs.202001207. |
164 | WANG C H, KIM J T, WANG C S, et al. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells[J]. Advanced Materials, 2023, 35(19): e2209074. DOI: 10.1002/adma.202209074. |
[1] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[2] | Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence [J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197. |
[3] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[4] | Congxin LI, Meiling YUE, Xintong LI, Qinghui XIONG, Xiaoyan LIU. Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks [J]. Energy Storage Science and Technology, 2024, 13(9): 3094-3102. |
[5] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[6] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[7] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[8] | Yajie LI, Yiping WANG, Bin CHEN, Hailong LIN, Geng ZHANG, Siqi SHI. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate [J]. Energy Storage Science and Technology, 2024, 13(9): 2864-2870. |
[9] | Jinbao FAN, Na LI, Yikun WU, Chunwang HE, Le YANG, Weili SONG, Haosen CHEN. Digital twin technology for energy batteries at the cell level [J]. Energy Storage Science and Technology, 2024, 13(9): 3112-3133. |
[10] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[11] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[12] | Hangting JIANG, Qianqian ZHANG, Songtong ZHANG, Xiayu ZHU, Wenjie MENG, Jingyi QIU, Hai MING. Internal resistance measurement and condition monitoring strategy for chemical power systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3400-3422. |
[13] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[14] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[15] | Chong LI, Chenhui WANG, Gao WANG, Zonghu LU, Chengzhi MA. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation [J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||