Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3811-3825.doi: 10.19799/j.cnki.2095-4239.2024.0467
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jing FANG1(), Xulai YANG1,2(
), Tao DAI3, Fei SUN4(
)
Received:
2024-05-28
Revised:
2024-07-26
Online:
2024-11-28
Published:
2024-11-27
Contact:
Xulai YANG, Fei SUN
E-mail:3032847400@qq.com;yangxl@hfuu.edu.cn;502976779@qq.com
CLC Number:
Jing FANG, Xulai YANG, Tao DAI, Fei SUN. Advances in polymer binders for silicon anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3811-3825.
Fig. 4
(a) Molecular structures of PAA and PSA binders; (b) Comparative cycling performance of SiNP electrodes with PSA-10%, PSA-20%, PSA-50%, PSA-70%, and PVDF as binders at a current density of 360 mA/g[48]; (c) Cycling performance of the PAA and 4A-PAA electrodes; (d) Cross-sectional SEM images of the (1, 2) PAA and 3,4) 4A-PAA electrodes before and after cycling[50]"
Fig. 6
(a) Schematic diagram of fabrication process of Si/C from waste Si[54]; (b) Working mechanism of CMC-NaPAA-PAM to the solution for the volume change of Si particles during cycling[56]; (c) Cycling performance of Si-CMC-CPAM electrode[57]; (d) Long cycling performance of Si anode with LiCMC-TA binder[58]"
Table 1
A summary of electrochemical properties of three different structural polymer binders"
黏结剂结构 | 黏结剂类型 | 黏结剂比例/% | 负极材料 | 循环性能 | 容量保持率/% | 参考文献 |
---|---|---|---|---|---|---|
线型 | PAA | — | SiNPs | 1518 mAh/g after 100 cycles at 0.2C | 35.97 | [ |
PAA-PEC | — | SiNPs | 2386 mAh/g after 100 cycles at 0.2C | 56.75 | [ | |
PAA-PVA | 20 | SiNPs (<100nm) | 2283 mAh/g after 100 cycles at 0.4 A/g | 63.14 | [ | |
LBG@XG | 10 | SiO x /C | 1000 cycles at 0.5 A/g | 74.1 | [ | |
支化 | PSA | 20 | SiNPs | 2513 mAh/g after 100 cycles at 0.36 A/g | 83 | [ |
PAA-GA | 20 | SiNPs | 2591 mAh/g after 285 cycles at 0.2C | 81 | [ | |
4A-PAA | 10 | SiO x /graphite | 558.1 mAh/g after 200 cycles at 0.16 A/g | 89.1 | [ | |
交联 | PAA-GL | 10 | Si@SiO2 | 1192.7 mAh/g after 500 cycles at 2C | 83.13 | [ |
CMC/EDTA-Ca2+ | 15 | Si/graphite | 602 mAh/g after 380 cycles at 1 A/g | 80.7 | [ | |
PAA-SS | 20 | SiNPs | 441 mAh/g after 500 cycles at 0.5 A/g | 88.2 | [ | |
CMC-CPAM | 20 | Si@C/graphite | 564 mAh/g after 350 cycles at 1.5 A/g | 78 | [ | |
LiCMC-TA | 1 | SiNPs | 1701 mAh/g after 150 cycles at 1 A/g | 80.0 | [ |
Fig. 9
(a) Cycling performance of the Si@C-P(iso) half-cell at different charge/discharge rates[67];(b) Conductivity plot of PEDOT:PSS films based on the PEG blending ratio; (c) Stress-strain curves of polymer films[73]; (d) Cycling performance of different electrodes at 0.8 A/g; (e) Rate capabilities of different electrodes at 0.1、0.2、0.4、0.8 and 1.6 A/g[74]"
1 | 李琳. 经济视角下锂离子电池产业技术现状、挑战与未来[J]. 储能科学与技术, 2024, 13(1): 358-360. DOI: 10.19799/j.cnki.2095-4239.2024.0016. |
LI L. Technological landscape, challenges, and future outlook of the lithium-ion battery industry: An economic perspective[J]. Energy Storage Science and Technology, 2024, 13(1): 358-360. DOI: 10.19799/j.cnki.2095-4239.2024.0016. | |
2 | ZHAN X, LI M, LI S, et al. Challenges and opportunities towards silicon-based all-solid-state batteries[J]. Energy Storage Materials, 2023, 61: 102875. DOI: 10.1016/j.ensm.2023.102875. |
3 | 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254. |
YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. | |
4 | XU Z L, LIU X M, LUO Y S, et al. Nanosilicon anodes for high performance rechargeable batteries[J]. Progress in Materials Science, 2017, 90: 1-44. DOI: 10.1016/j.pmatsci.2017.07.003. |
5 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. DOI: 10.1016/j.mattod.2014.10.040. |
6 | LI P, ZHAO G Q, ZHENG X B, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446. DOI: 10.1016/j.ensm.2018.07.014. |
7 | LI J, DAHN J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Journal of the Electrochemical Society, 2007, 154(3): A156. DOI: 10.1149/1.2409862. |
8 | ASHURI M, HE Q R, SHAW L L. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1): 74-103. DOI: 10.1039/C5NR05116A. |
9 | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. DOI: 10.1016/j.nantod.2012.08.004. |
10 | HU Z F, ZHAO R, YANG J J, et al. Binders for Si based electrodes: Current status, modification strategies and perspective[J]. Energy Storage Materials, 2023, 59: 102776. DOI: 10.1016/j.ensm.2023.102776. |
11 | GUO K, KUMAR R, XIAO X C, et al. Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes[J]. Nano Energy, 2020, 68: 104257. DOI: 10.1016/j.nanoen.2019.104257. |
12 | ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)-Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307. DOI: 10.1002/aenm.202203307. |
13 | HE Z Y, XIAO Z X, YUE H J, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes[J]. Advanced Functional Materials, 2023, 33(26): 2300094. DOI: 10.1002/adfm.202300094. |
14 | YUCA N, DOĞDU M F, CETINTASOGLU M E, et al. Investigation of the conductivity effect on silicon anode performance for lithium ion batteries[J]. ECS Meeting Abstracts, 2016 (3): 275. DOI: 10.1149/ma2016-02/3/275. |
15 | SCHWAN J, NAVA G, MANGOLINI L. Critical barriers to the large scale commercialization of silicon-containing batteries[J]. Nanoscale Advances, 2020, 2(10): 4368-4389. DOI: 10.1039/D0NA00589D. |
16 | SHEN T, YAO Z J, XIA X H, et al. Rationally designed silicon nanostructures as anode material for lithium-ion batteries[J]. Advanced Engineering Materials, 2018, 20(1). DOI: 10.1002/adem.201700591. |
17 | XIA X, QIAN X Y, CHEN C, et al. Recent progress of Si-based anodes in the application of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72: 108715. DOI: 10.1016/j.est. 2023. 108715. |
18 | ZHANG F, ZHU W Q, LI T T, et al. Advances of synthesis methods for porous silicon-based anode materials[J]. Frontiers in Chemistry, 2022, 10: 889563. DOI: 10.3389/fchem.2022.889563. |
19 | LI Z J, DU M J, GUO X, et al. Research progress of SiOx-based anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 473: 145294. DOI: 10.1016/j.cej.2023.145294. |
20 | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. DOI: 10.19799/j.cnki.2095-4239.2020.0163. |
YU C L, TIAN X H, ZHANG Z J, et al. Research progress of specific capacity improvements of silicon-based anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1614-1628. DOI: 10.19799/j.cnki.2095-4239.2020.0163. | |
21 | XU Y X, ZHANG Q, LV N, et al. Carboxyl function group introduced to polyimide binders for silicon anode materials[J]. Energy & Fuels, 2023, 37(3): 2441-2448. DOI: 10.1021/acs.energyfuels.2c04024. |
22 | LEE S Y, CHOI Y, KWON S H, et al. Cracking resistance and electrochemical performance of silicon anode on binders with different mechanical characteristics[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 216-222. DOI: 10.1016/j.jiec.2019.03.009. |
23 | SUN F, ROSBOROUGH N, CLARKE N, et al. Binder effect on electrochemical performance of silicon anodes[J]. ECS Meeting Abstracts, 2022, (3): 244. DOI: 10.1149/ma2022-023244mtgabs. |
24 | 刘大进, 吴强, 何仁杰, 等. 生物高分子在锂离子电池硅负极中的研究进展[J]. 储能科学与技术, 2021, 10(6): 2156-2168. DOI: 10.19799/j.cnki.2095-4239.2021.0115. |
LIU D J, WU Q, HE R J, et al. Research progress of biopolymers in Si anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. DOI: 10.19799/j.cnki.2095-4239.2021.0115. | |
25 | YOON D H, MARINARO M, AXMANN P, et al. Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160537. DOI: 10.1149/1945-7111/abcf4f. |
26 | ZHANG X Y, SONG W L, CHEN H S, et al. Role of the binder in the mechanical integrity of micro-sized crystalline silicon anodes for Li-Ion batteries[J]. Journal of Power Sources, 2020, 465: 228290. DOI: 10.1016/j.jpowsour.2020.228290. |
27 | LIU W J, SU S X, WANG Y, et al. Constructing a stable conductive network for high-performance silicon-based anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10703-10713. DOI: 10.1021/acsami.3c17942. |
28 | TAO W, WANG P, YOU Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12(8): 1739-1749. DOI: 10.1007/s12274-019-2361-4. |
29 | LI J T, WU Z Y, LU Y Q, et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7(24): 1701185. DOI: 10.1002/aenm.201701185. |
30 | CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982. DOI: 10.1021/acs.chemrev.8b00241. |
31 | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. DOI: 10.19799/j.cnki.2095-4239.2022.0125. |
DENG J X, ZHAO J L, HUANG C D. High energy density lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. DOI: 10.19799/j.cnki.2095-4239.2022.0125. | |
32 | LEE G, CHOI Y, JI H, et al. Interwoven carbon nanotube-poly(acrylic acid) network scaffolds for stable Si microparticle battery anode[J]. Carbon, 2023, 202: 12-19. DOI: 10.1016/j.carbon. 2022.10.031. |
33 | CHEN P, HUANG W L, LIU H T, et al. Enhanced cyclability of silicon anode via synergy effect of polyimide binder and conductive polyacrylonitrile[J]. Journal of Materials Science, 2019, 54(12): 8941-8954. DOI: 10.1007/s10853-019-03518-4. |
34 | HE J R, ZHANG L Z. Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode[J]. Journal of Alloys and Compounds, 2018, 763: 228-240. DOI: 10.1016/j.jallcom.2018.05.286. |
35 | ZHANG L, DING Y, SONG J X. Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries[J]. Chinese Chemical Letters, 2018, 29(12): 1773-1776. DOI: 10.1016/j.cclet.2018.03.008. |
36 | XU Y H, YIN G P, MA Y L, et al. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder[J]. Journal of Power Sources, 2010, 195(7): 2069-2073. DOI: 10.1016/j.jpowsour.2009.10.041. |
37 | BRIDEL J S, AZAÏS T, MORCRETTE M, et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chemistry of Materials, 2010, 22(3): 1229-1241. DOI: 10.1021/cm902688w. |
38 | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010. DOI: 10.1021/am100871y. |
39 | RAMDHINY M N, JEON J W. Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries[J]. Carbon Energy, 2024, 6(4): e356. DOI: 10.1002/cey2.356. |
40 | MAZOUZI D, LESTRIEZ B, ROUÉ L, et al. Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215. DOI: 10.1149/1.3212894. |
41 | KOMABA S, SHIMOMURA K, YABUUCHI N, et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(27): 13487-13495. DOI: 10.1021/jp201691g. |
42 | WANG J T, WAN C C, HONG J L. Polymer Blends of Pectin/Poly(acrylic acid) as Efficient Binders for Silicon Anodes in Lithium-Ion Batteries[J]. ChemElectroChem, 2020, 7(14): 3106-3115. DOI: 10.1002/celc.202000666. |
43 | SONG J X, ZHOU M J, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37): 5904-5910. DOI: 10.1002/adfm.201401269. |
44 | DUFFICY M K, CORDER R D, DENNIS K A, et al. Guar gel binders for silicon nanoparticle anodes: Relating binder rheology to electrode performance[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51403-51413. DOI: 10.1021/acsami.1c10776. |
45 | ZHONG H X, HE J R, ZHANG L Z. Crosslinkable aqueous binders containing Arabic gum-grafted-poly (acrylic acid) and branched polyols for Si anode of lithium-ion batteries[J]. Polymer, 2021, 215: 123377. DOI: 10.1016/j.polymer.2020.123377. |
46 | LIU H Y, LIAO J P, ZHU T M, et al. In situ hydrogel polymerization to form a flexible polysaccharide synergetic binder network for stabilizing SiOx/C anodes[J]. ACS Applied Materials & Interfaces, 2023, 15(42): 49071-49082. DOI: 10.1021/acsami.3c08610. |
47 | PÉREZ-MATEOS M, MONTERO P. Effects of cations on the gelling characteristics of fish mince with added nonionic and ionic gums[J]. Food Hydrocolloids, 2002, 16(4): 363-373. DOI: 10.1016/S0268-005X(01)00109-6. |
48 | PAN Y Y, GE S R, RASHID Z, et al. Adhesive polymers as efficient binders for high-capacity silicon electrodes[J]. ACS Applied Energy Materials, 2020, 3(4): 3387-3396. DOI: 10.1021/acsaem.9b02420. |
49 | LI J J, ZHANG G Z, YANG Y, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 406: 102-109. DOI: 10.1016/j.jpowsour.2018.10.057. |
50 | LUO C, WU X F, ZHANG T, et al. A four-armed polyacrylic acid homopolymer binder with enhanced performance for SiOx/graphite anode[J]. Macromolecular Materials and Engineering, 2021, 306(1): DOI: 10.1002/mame.202000525. |
51 | CAO P F, YANG G, LI B R, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Letters, 2019, 4(5): 1171-1180. DOI: 10.1021/acsenergylett.9b00815. |
52 | YE H J, JIANG F Q, LI H Q, et al. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries[J]. Electrochimica Acta, 2017, 253: 319-323. DOI: 10.1016/j.electacta.2017.09.062. |
53 | SUN S, HE D L, LI P, et al. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 454: 227907. DOI: 10.1016/j.jpowsour. 2020.227907. |
54 | ZHANG S, XU X, TU J, et al. Cross-linked binder enables reversible volume changes of Si-based anodes from sustainable photovoltaic waste silicon[J]. Materials Today Sustainability, 2022, 19: 100178. DOI: 10.1016/j.mtsust.2022.100178. |
55 | LIU J, MA R G, ZHENG W, et al. Cross-linking network of soft–rigid dual chains to effectively suppress volume change of silicon anode[J]. The Journal of Physical Chemistry Letters, 2022, 13(33): 7712-7721. DOI: 10.1021/acs.jpclett.2c02019. |
56 | YU L B, LIU J, HE S S, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2019, 135: 109113. DOI: 10.1016/j.jpcs.2019.109113. |
57 | ZHANG J H, WANG N, ZHANG W, et al. A cycling robust network binder for high performance Si–based negative electrodes for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 578: 452-460. DOI: 10.1016/j.jcis.2020.06.008. |
58 | TANG B, HE S G, DENG Y Y, et al. Advanced binder with ultralow-content for high performance silicon anode[J]. Journal of Power Sources, 2023, 556: 232237. DOI: 10.1016/j.jpowsour.2022.232237. |
59 | CHEN J H, LI Y X, WU X Y, et al. Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 657: 893-902. DOI: 10.1016/j.jcis.2023.12.057. |
60 | JANG W, KIM S, KANG Y M, et al. A high-performance self-healing polymer binder for Si anodes based on dynamic carbon radicals in cross-linked poly(acrylic acid)[J]. Chemical Engineering Journal, 2023, 469: 143949. DOI: 10.1016/j.cej.2023.143949. |
61 | WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 121-129. DOI: 10.1016/j.ensm.2021.03.003. |
62 | ZHAO J K, LI W H, XIE M Z, et al. Robust 3D network binder for stable and high-performance Si-based lithium-ion battery anodes[J]. Advanced Materials Technologies, 2023, 8(13): 2201830. DOI: 10.1002/admt.202201830. |
63 | ZHAO E Y, GUO Z L, LIU J, et al. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries[J]. Electrochimica Acta, 2021, 387: 138491. DOI: 10.1016/j.electacta.2021.138491. |
64 | CHEN S M, SONG Z B, WANG L, et al. Establishing a resilient conductive binding network for Si-based anodes via molecular engineering[J]. Accounts of Chemical Research, 2022, 55(15): 2088-2102. DOI: 10.1021/acs.accounts.2c00259. |
65 | LIU Y X, SHAO R, JIANG R Y, et al. A review of existing and emerging binders for silicon anodic Li-ion batteries[J]. Nano Research, 2023, 16(5): 6736-6752. DOI: 10.1007/s12274-022-5281-7. |
66 | YE Q Q, ZHENG P T, AO X H, et al. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries[J]. Electrochimica Acta, 2019, 315: 58-66. DOI: 10.1016/j.electacta. 2019.05.093. |
67 | MERY A, BERNARD P, VALERO A, et al. A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications[J]. Journal of Power Sources, 2019, 420: 9-14. DOI: 10.1016/j.jpowsour. 2019.02.062. |
68 | LIU G, XUN S D, VUKMIROVIC N, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes[J]. Advanced Materials, 2011, 23(40): 4679-4683. DOI: 10.1002/adma.201102421. |
69 | YU Y Y, ZHU J D, ZENG K, et al. Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(6): 3472-3481. DOI: 10.1039/D0TA10525B. |
70 | BAHRY T, CUI Z P, DENISET-BESSEAU A, et al. An alternative radiolytic route for synthesizing conducting polymers in an organic solvent[J]. New Journal of Chemistry, 2018, 42(11): 8704-8716. DOI: 10.1039/C8NJ01041B. |
71 | JONAS F, KRAFFT W, MUYS B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties[J]. Macromolecular Symposia, 1995, 100(1): 169-173. DOI: 10.1002/masy.19951000128. |
72 | HIGGINS T M, PARK S H, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702-3713. DOI: 10.1021/acsnano. 6b00218. |
73 | KONG N J, KIM M S, PARK J H, et al. Promoting homogeneous lithiation of silicon anodes via the application of bifunctional PEDOT: PSS/PEG composite binders[J]. Energy Storage Materials, 2024, 64: 103074. DOI: 10.1016/j.ensm.2023.103074. |
74 | KIM J, KIM M S, LEE Y, et al. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17340-17347. DOI: 10.1021/acsami. 2c00844. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[11] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[12] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[13] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[14] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[15] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||