Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3874-3888.doi: 10.19799/j.cnki.2095-4239.2024.0377
• Energy Storage System and Engineering • Previous Articles Next Articles
Junyi ZHI1,3(), Haoshu LING2,3,4(), Hao WU1, Yilin ZHU2, Haotian SHEN3, Yujie XU2,4, Haisheng CHEN2,4
Received:
2024-05-06
Revised:
2024-07-26
Online:
2024-11-28
Published:
2024-11-27
Contact:
Haoshu LING
E-mail:18151935178@163.com;linghaoshu@iet.cn
CLC Number:
Junyi ZHI, Haoshu LING, Hao WU, Yilin ZHU, Haotian SHEN, Yujie XU, Haisheng CHEN. Optimization of capacity configuration for multi-energy complementary systems using wind, solar, and energy storage[J]. Energy Storage Science and Technology, 2024, 13(11): 3874-3888.
Table 4
Main equipment economic parameters [33,35-36]"
设备 | 参数 | 数值 |
---|---|---|
光伏发电机组 | 初始投资成本 | 2400 CNY/kW |
运行成本 | 0.03 CNY/kWh | |
使用寿命 | 20年 | |
风力发电机组 | 初始投资成本 | 2800 CNY/kW |
运行成本 | 0.05 CNY/kWh | |
使用寿命 | 20年 | |
燃气轮机 | 初始投资成本 | 3000 CNY/kW |
运行成本 | 0.05 CNY/kWh | |
使用寿命 | 20年 | |
燃气锅炉 | 初始投资成本 | 1150 CNY/kW |
运行成本 | 0.04 CNY/kWh | |
使用寿命 | 20年 | |
电加热器 | 初始投资成本 | 1050 CNY/kW |
运行成本 | 0.08 CNY/kWh | |
使用寿命 | 20年 | |
储电单元 | 初始投资成本 | 2000 CNY/kWh |
运行成本 | 0.018 CNY/kWh | |
使用寿命 | 10年 | |
蓄热单元 | 初始投资成本 | 140 CNY/kWh |
运行成本 | 0.016 CNY/kWh | |
使用寿命 | 10年 |
1 | 李红霞, 李建林, 米阳. 新能源侧储能优化配置技术研究进展[J]. 储能科学与技术, 2022, 11(10): 3257-3267. DOI: 10.19799/j.cnki. 2095-4239.2022.0102. |
LI H X, LI J L, MI Y. Summary of research on new energy side energy storage optimization configuration technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3257-3267. DOI: 10.19799/j.cnki.2095-4239.2022.0102 | |
2 | 王一珺, 杜文娟, 王海风. 大规模风电汇集系统小干扰稳定性研究综述[J]. 电网技术, 2022, 46(5): 1934-1946. DOI: 10.13335/j.1000-3673.pst.2021.1217. |
WANG Y J, DU W J, WANG H F. Review on small signal stability analysis of large-scale wind power collection system[J]. Power System Technology, 2022, 46(5): 1934-1946. DOI: 10.13335/j.1000-3673.pst.2021.1217. | |
3 | 曹又敏. 基于多能互补的园区综合能源系统优化调度[D]. 西安: 西安理工大学, 2020. DOI: 10.27398/d.cnki.gxalu.2020.000816. |
CAO Y M. Optimal scheduling of comprehensive energy system in park based on multi-energy complementarity[D]. Xi'an: Xi'an University of Technology, 2020. DOI: 10.27398/d.cnki.gxalu.2020.000816. | |
4 | PENG Z X, CHEN X D, YAO L M. Research status and future of hydro-related sustainable complementary multi-energy power generation[J]. Sustainable Futures, 2021, 3: 100042. DOI: 10. 1016/j.sftr.2021.100042. |
5 | 杨勇平, 段立强, 杜小泽, 等. 多能源互补分布式能源的研究基础与展望[J]. 中国科学基金, 2020, 34(3): 281-288. DOI: 10.16262/j.cnki.1000-8217.2020.03.006. |
YANG Y P, DUAN L Q, DU X Z, et al. Research foundation and prospect on distributed energy system with the complementation of multiple energy sources[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(3): 281-288. DOI: 10.16262/j.cnki. 1000-8217.2020.03.006. | |
6 | GERAMI MOGHADDAM I, SAEIDIAN A. Self scheduling program for a VRB energy storage in a competitive electricity market[C]//2010 International Conference on Power System Technology. October 24-28, 2010, Zhejiang, China. IEEE, 2010: 1-6. DOI: 10. 1109/POWERCON.2010.5666037. |
7 | OMRAN W A, KAZERANI M, SALAMA M M A. Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 318-327. DOI: 10.1109/TEC. 2010.2062515. |
8 | KAABECHE A, BELHAMEL M, IBTIOUEN R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system[J]. Energy, 2011, 36(2): 1214-1222. DOI: 10.1016/j.energy.2010.11.024. |
9 | SFIKAS E E, KATSIGIANNIS Y A, GEORGILAKIS P S. Simultaneous capacity optimization of distributed generation and storage in medium voltage microgrids[J]. International Journal of Electrical Power & Energy Systems, 2015, 67: 101-113. DOI: 10.1016/j.ijepes.2014.11.009. |
10 | MAHDAVI S, HEMMATI R, JIRDEHI M A. Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks[J]. Energy, 2018, 151: 954-965. DOI: 10.1016/j.energy.2018.03.123. |
11 | 徐林, 阮新波, 张步涵, 等. 风光蓄互补发电系统容量的改进优化配置方法[J]. 中国电机工程学报, 2012, 32(25): 88-98, 14. DOI: 10.13334/j.0258-8013.pcsee.2012.25.017. |
XU L, RUAN X B, ZHANG B H, et al. An improved optimal sizing method for wind-solar-battery hybrid power system[J]. Proceedings of the CSEE, 2012, 32(25): 88-98, 14. DOI: 10.13334/j.0258-8013.pcsee.2012.25.017. | |
12 | 祝荣, 陈俊清, 宋伟, 等. 风光储一体化综合能源系统柔性调度策略[J]. 太阳能, 2022(5): 67-76. DOI: 10.19911/j.1003-0417.tyn 20220324.02. |
ZHU R, CHEN J Q, SONG W, et al. Flexible scheduling strategy for integrated energy systems with wind-pv-energy storage[J]. Solar Energy, 2022(5): 67-76. DOI: 10.19911/j.1003-0417.tyn 20220324.02. | |
13 | 郭进, 陆运章, 张佳亮, 等. 适用于青藏高原地区的风光柴互补能源系统的优化设计[J]. 太阳能, 2022(1): 55-61. DOI: 10.19911/j.1003-0417.tyn20201022.03. |
GUO J, LU Y Z, ZHANG J L, et al. Optimal design of wind-pv-diesel hybrid energy system suitable for Qinghai-Tibet plateau[J]. Solar Energy, 2022(1): 55-61. DOI: 10.19911/j.1003-0417.tyn 20201022.03. | |
14 | 李彦哲, 郭小嘉, 董海鹰, 等. 风/光/储微电网混合储能系统容量优化配置[J]. 供电系统及其自动化学报, 2020, 32(6): 123-128. DOI: 10.19635/j.cnki.csu-epsa.000322. |
LI Y Z, GUO X J, DONG H Y, et al. Optimal capacity configuration of wind/PV/storage hybrid energy storage system in microgrid[J]. Proceedings of the CSU-EPSA, 2020, 32(6): 123-128. DOI: 10. 19635/j.cnki.csu-epsa.000322. | |
15 | 尹青, 杨洪耕, 马晓阳. 考虑多重不确定参数的配电网概率无功优化[J]. 供电系统保护与控制, 2017, 45(7): 141-147. DOI: 10.7667/PSPC160503. |
YIN Q, YANG H G, MA X Y. Probabilistic reactive power optimization for distribution network considering multiple uncertainties[J]. Power System Protection and Control, 2017, 45(7): 141-147. DOI: 10.7667/PSPC160503. | |
16 | 尹青, 杨洪耕, 马晓阳. 含大规模风电场的电网概率无功优化调度[J]. 电网技术, 2017, 41(2): 514-520. DOI: 10.13335/j.1000-3673.pst.2016.0720. |
YIN Q, YANG H G, MA X Y. Probabilistic optimal reactive power dispatch of power grid with large-scale wind farm integration[J]. Power System Technology, 2017, 41(2): 514-520. DOI: 10.13335/j.1000-3673.pst.2016.0720. | |
17 | 梅书凡, 檀勤良, 代美. 考虑风光出力季节性波动的储能容量配置[J]. 供电工程技术, 2022, 41(4): 51-57. DOI: 10.12158/j.2096-3203.2022.04.007. |
MEI S F, TAN Q L, DAI M. Energy storage capacity configuration considering seasonal fluctuation of wind and photovoltaic output[J]. Electric Power Engineering Technology, 2022, 41(4): 51-57. DOI: 10.12158/j.2096-3203.2022.04.007. | |
18 | 张歆蒴, 黄炜斌, 王峰, 等. 大型风光水混合能源互补发电系统的优化调度研究[J]. 中国农村水利水电, 2019(12): 181-185, 190. DOI: 10.3969/j.issn.1007-2284.2019.12.037. |
ZHANG X S, HUANG W B, WANG F, et al. Research on the optimal scheduling of large wind-PV-hydro hybrid energy compl ementary power generation system[J]. China Rural Water and Hydropower, 2019(12): 181-185, 190. DOI: 10.3969/j.issn.1007-2284.2019.12.037. | |
19 | 黄文龙, 葛文超, 任洪波, 等. 全可再生能源多能互补系统优化配置与运行探索[J]. 太阳能学报, 2024, 45(5): 351-359. DOI: 10.19912/j.0254-0096.tynxb.2023-0002. |
HUANG W L, GE W C, REN H B, et al. Exploration of optimal configuration and operation for all-renewable multi-energy complementary systems[J]. Acta Energiae Solaris Sinica, 2024, 45(5): 351-359. DOI: 10.19912/j.0254-0096.tynxb.2023-0002. | |
20 | 邵志芳, 张东强. 基于合约负荷曲线的多能互补供电系统容量优化配置[J]. 电网技术, 2021, 45(5): 1757-1767. DOI: 10.13335/j.1000-3673.pst.2020.0236. |
SHAO Z F, ZHANG D Q. Capacity configuration optimization of multi-energy complementary power system based on contract load curve[J]. Power System Technology, 2021, 45(5): 1757-1767. DOI: 10.13335/j.1000-3673.pst.2020.0236. | |
21 | 吴克河, 周欢, 刘吉臻. 大规模并网型风光储发电单元容量优化配置方法[J]. 太阳能学报, 2015, 36(12): 2946-2953. DOI: 10.3969/j.issn.0254-0096.2015.12.015. |
WU K H, ZHOU H, LIU J Z. Capacity allocation optimization method of large scale grid connected wind-pv-battery generation unit[J]. Acta Energiae Solaris Sinica, 2015, 36(12): 2946-2953. DOI: 10.3969/j.issn.0254-0096.2015.12.015. | |
22 | 谭岭玲. 多能互补型微电网规划配置和优化运行研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.002215. |
TAN L L. Study on planning and optimal operation of multi-energy complementary microgrid[D]. Harbin: Harbin Institute of Technology, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.002215. | |
23 | MALEKI A, ASKARZADEH A. Comparative study of artificial intelligence techniques for sizing of a hydrogen-based stand-alone photovoltaic/wind hybrid system[J]. International Journal of Hydrogen Energy, 2014, 39(19): 9973-9984. DOI: 10.1016/j.ijhydene.2014.04.147. |
24 | 李淼. 分布式能源系统3E效益综合评价研究[D]. 大连: 大连理工大学, 2015.LI M. Study on comprehensive evaluation of 3E benefit of distributed energy system[D]. Dalian: Dalian University of Technology, 2015. |
25 | LI M, MU H L, LI H N. Analysis and assessments of combined cooling, heating and power systems in various operation modes for a building in China, Dalian[J]. Energies, 2013, 6(5): 2446-2467. DOI: 10.3390/en6052446. |
26 | 韩鑫. 分布式能源系统构造及建模研究[D]. 太原: 太原理工大学, 2015.HAN X. Research on construction and modeling of distributed energy system[D]. Taiyuan: Taiyuan University of Technology, 2015. |
27 | 孙雯雯, 徐玉杰, 丁捷, 等. 高原高寒地区可再生能源与储能集成供能系统研究[J]. 储能科学与技术, 2019, 8(4): 678-688. DOI: 10.12028/j.issn.2095-4239.2019.0040. |
SUN W W, XU Y J, DING J, et al. An energy system for the integration of renewable energy with energy storage in a frigid plateau region[J]. Energy Storage Science and Technology, 2019, 8(4): 678-688. DOI: 10.12028/j.issn.2095-4239.2019.0040. | |
28 | 王乐莹. 多孔炭在铅炭电池负极中的作用机制研究[D]. 北京: 北京科技大学, 2017.WANG L Y. Study on the mechanism of porous carbon in the negative electrode of lead-carbon battery[D]. Beijing: University of Science and Technology Beijing, 2017. |
29 | 包金鹏. 启停用铅炭储能体系的研究[D]. 长春: 吉林大学, 2020. DOI: 10.27162/d.cnki.gjlin.2020.007201. |
BAO J P. Study on activation and deactivation of lead-carbon energy storage system[D]. Changchun: Jilin University, 2020. DOI: 10.27162/d.cnki.gjlin.2020.007201. | |
30 | 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江供电, 2020, 39(3): 75-81. DOI: 10.19585/j.zjdl.202003012. |
MEI J, ZHANG J, LIU S Y, et al. Development status of battery energy storage technology[J]. Zhejiang Electric Power, 2020, 39(3): 75-81. DOI: 10.19585/j.zjdl.202003012. | |
31 | 李杰才. 石墨烯基新型多孔材料作为铅炭电池负极添加剂的研究[D]. 南宁: 广西大学, 2021. DOI: 10.27034/d.cnki.ggxiu. 2021. 000237. |
LI J C. Study on graphene-based novel porous materials as anode additives for lead-carbon batteries[D]. Nanning: Guangxi University, 2021. DOI: 10.27034/d.cnki.ggxiu.2021.000237. | |
32 | LI M, MU H L, LI N, et al. Optimal option of natural-gas district distributed energy systems for various buildings[J]. Energy and Buildings, 2014, 75: 70-83. DOI: 10.1016/j.enbuild.2014.01.051. |
33 | SHEN H T, ZHANG H L, XU Y J, et al. Multi-objective capacity configuration optimization of an integrated energy system considering economy and environment with harvest heat[J]. Energy Conversion and Management, 2022, 269: 116116. DOI: 10.1016/j.enconman.2022.116116. |
34 | 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005. |
35 | MEI F, ZHANG J T, LU J X, et al. Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations[J]. Energy, 2021, 219: 119629. DOI: 10.1016/j.energy.2020.119629. |
36 | 王晓海. 基于综合能源协同优化的智慧园区容量配置研究[D]. 北京: 华北电力大学, 2020. DOI: 10.27140/d.cnki.ghbbu.2020.000516. |
WANG X H. Research on capacity allocation of smart park based on comprehensive energy collaborative optimization[D]. Beijing: North China Electric Power University, 2020. DOI: 10.27140/d.cnki.ghbbu.2020.000516. |
[1] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[2] | Chu ZHANG, Dongcai CHEN, Xiangping CHEN, Yongxiang CAI. Economic benefit analysis of optimal allocation of energy storage in multiple application scenarios [J]. Energy Storage Science and Technology, 2024, 13(6): 2078-2088. |
[3] | Jing WU, Le ZHANG. Research on capacity configuration and energy optimization of energy storage systems in rail transit [J]. Energy Storage Science and Technology, 2024, 13(11): 4053-4055. |
[4] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[5] | Zhenbo WEI, Yixin YAO, Wenwen ZHANG, Zihang LUO, Yinjiang LI, Yujie REN. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN [J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. |
[6] | Haodong ZHAO, Furen ZHANG, Bolin DU, Xue LI, Zhikai HUANG, Shizheng SUN. Strengthening the heat dissipation performance of liquid cooling plate by adding a diversion hole and a finned channel wall [J]. Energy Storage Science and Technology, 2023, 12(10): 3108-3119. |
[7] | Shuangming DUAN, Penglai DONG. Adaptive charging strategy for lithium-ion battery based on differential voltage platform [J]. Energy Storage Science and Technology, 2023, 12(10): 3170-3180. |
[8] | Shuai HAN, Leping SUN, Jianbin LU, Xiaoxuan GUO. Multi-objective optimal dispatch strategy of gas-electric interconnected virtual power plant interval with electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1428-1436. |
[9] | Xiaobin XU, Yefei XU, Hengyun ZHANG, Shunliang ZHU, Haifeng WANG. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module [J]. Energy Storage Science and Technology, 2022, 11(2): 553-562. |
[10] | Shitan ZHANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Evaluation method for the coordinated regulation of large-scale abandoned wind power and heat storage [J]. Energy Storage Science and Technology, 2022, 11(1): 283-290. |
[11] | Yuxuan XIE, Yunju BAI, Yijun XIAO. Overall capacity allocation of energy storage tram with ground charging piles [J]. Energy Storage Science and Technology, 2021, 10(4): 1388-1399. |
[12] | Wei LI, Zhitao ZUO, Hucan HOU, Qi LIANG, Zhihua LIN, Haisheng CHEN. Parameterization and multi-objective optimization of centrifugal compressor volute based on genetic algorithm [J]. Energy Storage Science and Technology, 2021, 10(3): 1071-1079. |
[13] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
[14] | Kun XIE, Chenglong JIANG, Liangxuan WU, Hong CHANG, Bin FAN, Liduo CHEN, Haoran WEN. Optimal capacity-allocation of generation and battery storage system based on cascade utilization of outdated battery [J]. Energy Storage Science and Technology, 2020, 9(S1): 23-30. |
[15] | Changming DING, Hua WEN. Multi-objective thermal optimization of ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1961-1968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||