Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4187-4197.doi: 10.19799/j.cnki.2095-4239.2024.0539
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jianjie JIANG1(), Ping LOU2, Guohua XU2, Jun LAI2, Yao WANG1, Zhicheng CAO3, Weixin ZHANG3(), Yuancheng CAO3
Received:
2024-06-17
Revised:
2024-08-14
Online:
2024-11-28
Published:
2024-11-27
Contact:
Weixin ZHANG
E-mail:3455709348@qq.com;weixinzhang@hust.edu.cn
CLC Number:
Jianjie JIANG, Ping LOU, Guohua XU, Jun LAI, Yao WANG, Zhicheng CAO, Weixin ZHANG, Yuancheng CAO. Research on lithium-ion battery thermal runaway early warning method based on prediction error[J]. Energy Storage Science and Technology, 2024, 13(11): 4187-4197.
1 | 喻航, 张英, 徐超航, 等. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki. 2095-4239.2022.0116. |
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022.0116. | |
2 | 管敏渊, 沈建良, 徐国华, 等. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. DOI: 10.19799/j.cnki.2095-4239.2022.0719. |
GUAN M Y, SHEN J L, XU G H, et al. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. DOI: 10.19799/j.cnki.2095-4239.2022.0719. | |
3 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
4 | 周剑文. 锂离子电池热失控建模与热蔓延抑制研究[D]. 济南: 山东大学, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004758. |
ZHOU J W. Thermal runaway modeling and thermal spread suppression of lithium-ion batteries[D]. Jinan: Shandong University, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004758. | |
5 | 李钊, 陈才星, 牛慧昌, 等. 锂离子电池热失控早期预警特征参数分析[J]. 消防科学与技术, 2020, 39(2): 146-149. DOI: 10.3969/j.issn.1009-0029.2020.02.002. |
LI Z, CHEN C X, NIU H C, et al. Characteristic parameter analysis of thermal\r runaway early warning of lithium-ion battery[J]. Fire Science and Technology, 2020, 39(2): 146-149. DOI: 10.3969/j.issn.1009-0029.2020.02.002. | |
6 | OMAER FARUQ GONI M, MONDAL M N I, RIAZUL ISLAM S M, et al. Diagnosis of malaria using double hidden layer extreme learning machine algorithm with CNN feature extraction and parasite inflator[J]. IEEE Access, 2023, 11: 4117-4130. DOI: 10.1109/ACCESS.2023.3234279. |
7 | ZHOU Z X, HUBER N R, INOUE A, et al. Multislice input for 2D and 3D residual convolutional neural network noise reduction in CT[J]. Journal of Medical Imaging, 2023, 10(1): 014003. DOI: 10.1117/1.JMI.10.1.014003. |
8 | YAO Y, LIU D. Short-term wind power forecasting based on attention mechanism of CNN-LSTM[J]. Modern Electric Power, 2022, 39(2): 212-218. DOI: 10.19725/j.cnki.1007-2322. 2021. 0108. |
9 | CHANG S Z, DU B, ZHANG L P. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4033-4046. DOI: 10.1109/TGRS.2019.2960391. |
10 | HUANG S, DU Z J, ZHOU Q, et al. In situ measurement of temperature distributions in a Li-ion cell during internal short circuit and thermal runaway[J]. Journal of the Electrochemical Society, 2021, 168(9): 090510. DOI: 10.1149/1945-7111/ac1d7b. |
11 | 周炜航, 叶青, 叶蕾, 等. 锂离子电池内温度场健康状态分布式光纤原位监测技术研究[J]. 中国激光, 2020, 47(12): 154-163. DOI: 10.3788/CJL202047.1204002. |
ZHOU W H, YE Q, YE L, et al. Distributed optical fiber in situ monitoring technology for a healthy temperature field in lithium ion batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 154-163. DOI: 10.3788/CJL202047.1204002. | |
12 | SONG X Y, LIU Y T, XUE L, et al. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106682. DOI: 10.1016/j.petrol. 2019. 106682. |
13 | OJO O, LANG H X, KIM Y, et al. A neural network based method for thermal fault detection in lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4068-4078. DOI: 10.1109/TIE.2020.2984980. |
14 | 杨启帆, 马宏忠, 段大卫, 等. 基于气体特性的锂离子电池热失控在线预警方法[J]. 高电压技术, 2022, 48(3): 1202-1211. DOI: 10.13336/j.1003-6520.hve.20210261. |
YANG Q F, MA H Z, DUAN D W, et al. Thermal runaway online warning method for lithium-ion battery based on gas characteristics[J]. High Voltage Engineering, 2022, 48(3): 1202-1211. DOI: 10.13336/j.1003-6520.hve.20210261. | |
15 | 邓原冰. 锂离子动力电池热失控及其预警机制的试验与仿真研究[D]. 武汉: 华中科技大学, 2017.DENG Y B. Experimental and simulation study on thermal runaway of lithium-ion power battery and its early warning mechanism[D]. Wuhan: Huazhong University of Science and Technology, 2017. |
16 | LI D, LIU P, ZHANG Z S, et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525. DOI: 10.1109/TPEL. 2022. 3150026. |
17 | 王娜, 李强. 大数据分析管理系统在新能源汽车事故分析中的应用[J]. 时代汽车, 2024(2): 192-194. DOI: 10.3969/j.issn.1672-9668.2024.02.061. |
WANG N, LI Q. Application of big data analysis management system in new energy vehicle accident analysis[J]. Auto Time, 2024(2): 192-194. DOI: 10.3969/j.issn.1672-9668.2024.02.061. | |
18 | HONG J C, WANG Z P, CHEN W, et al. Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks[J]. Applied Energy, 2019, 254: 113648. DOI: 10.1016/j.apenergy.2019.113648. |
19 | HONG J C, WANG Z P, YAO Y T. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: 113381. DOI: 10.1016/j.apenergy.2019.113381. |
20 | HU J, TANG X J, ZHU X L, et al. Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist[J]. Energy, 2024, 286: 129669. DOI: 10.1016/j.energy.2023.129669. |
21 | NORTHWOOD K, PEARSON E, ARNAUTOVSKA U, et al. Optimising plasma clozapine levels to improve treatment response: An individual patient data meta-analysis and receiver operating characteristic curve analysis[J]. British Journal of Psychiatry, 2023, 222(6): 241-245. DOI: 10.1192/bjp.2023.27. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[15] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||