Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1929-1939.doi: 10.19799/j.cnki.2095-4239.2024.0045
• Energy Storage System and Engineering • Previous Articles Next Articles
Siyuan HUANG1(), Chen WANG2(), Ting LIANG3, Zhu JIANG1, Jiajing LI2, Xiaohui SHE2, Xiaosong ZHANG1()
Received:
2024-01-12
Revised:
2024-01-22
Online:
2024-06-28
Published:
2024-06-26
Contact:
Chen WANG, Xiaosong ZHANG
E-mail:hsy000125@163.com;wangchen@stdu.edu.cn;rachpe@seu.edu.cn
CLC Number:
Siyuan HUANG, Chen WANG, Ting LIANG, Zhu JIANG, Jiajing LI, Xiaohui SHE, Xiaosong ZHANG. Research on optimal configuration for integrated energy system with liquid air energy storage combined heat and power supply[J]. Energy Storage Science and Technology, 2024, 13(6): 1929-1939.
1 | CHEN S Q, KHARRAZI A, LIANG S, et al. Advanced approaches and applications of energy footprints toward the promotion of global sustainability[J]. Applied Energy, 2020, 261: 114415. |
2 | 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194-207. |
JIANG H Y, DU E S, ZHU G P, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(19): 194-207. | |
3 | ZHOU J, WU Y, WU C, et al. A hybrid fuzzy multi-criteria decision-making approach for performance analysis and evaluation of park-level integrated energy system[J]. Energy Conversion and Management, 2019, 201: 112134. |
4 | 王强钢, 吴雪翚, 杨龙杰, 等. 考虑设备变工况特性和灵活性供需匹配的园区综合能源系统优化配置模型[J]. 电力自动化设备, 2023, 43(3): 20-28, 37. |
WANG Q G, WU X H, YANG L J, et al. Optimal allocation model of community integrated energy system considering off-design performance of device and flexible supply-demand matching[J]. Electric Power Automation Equipment, 2023, 43(3): 20-28, 37. | |
5 | WANG W, YUAN B Q, SUN Q, et al. Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy [C]//2023 IEEE 7th Conference on Energy Internet and Energy System Integration. [2024-05-14].doi:10.1109/EI259745.2023.10512495. |
6 | SUN Y S, PEI W, JIA D Q, et al. Application of integrated energy storage system in wind power fluctuation mitigation[J]. Journal of Energy Storage, 2020, 32: 101835. |
7 | ZHANG Y, MENG F, WANG R, et al. Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid[J]. Energy, 2019, 179: 1265-1278. |
8 | 魏震波, 姚怡欣, 张雯雯, 等. 基于完备集合经验模态分解的含抽蓄微电网混合储能容量优化配置[J]. 储能科学与技术, 2023, 12(11): 3414-3424. |
WEI Z B, YAO Y X, ZHANG W W, et al. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN[J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. | |
9 | 刘忠, 张乐, 寇攀高, 等. 并网型风电-光伏-抽水蓄能-蓄电池系统容量优化配置[J]. 动力工程学报, 2023, 43(9): 1151-1159. |
LIU Z, ZHANG L, KOU P G, et al. Capacity allocation optimization on grid connected system consisting of wind power, photovoltaic power, pumped storage and battery[J]. Journal of Chinese Society of Power Engineering, 2023, 43(9): 1151-1159. | |
10 | ELAHEH B, FUZHAN N, FARIBORZ H. Optimal planning and configuration of adiabatic-compressed air energy storage for urban buildings application: Techno-economic and environmental assessment[J]. Journal of Energy Storage, 2024, 76: 109720-. |
11 | 贾宏刚, 岳园园, 严欢, 等. 基于粒子群算法的混合储能系统容量优化研究[J]. 自动化与仪器仪表, 2023(10): 282-287. |
JIA H G, YUE Y Y, YAN H, et al. Study on capacity optimization of hybrid energy storage system based on particle swarm algorithm[J]. Automation & Instrumentation, 2023(10): 282-287. | |
12 | WANG C, ZHANG X S, YOU Z P, et al. The effect of air purification on liquid air energy storage-An analysis from molecular to systematic modelling[J]. Applied Energy, 2021, 300: 117349. |
13 | 何子睿, 齐伟, 宋锦涛, 等. 耦合液化天然气的液化空气储能系统热力学分析[J]. 储能科学与技术, 2021, 10(5): 1589-1596. |
HE Z R, QI W, SONG J T, et al. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas[J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596. | |
14 | 肖力木, 高欣, 张世海, 等. 耦合LNG及ORC的液态空气储能系统热力学分析[J]. 储能科学与技术, 2023, 12(1): 155-164. |
XIAO L M, GAO X, ZHANG S H, et al. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle[J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. | |
15 | 游广增, 陈宇, 陈孝元, 等. 考虑短时负荷调峰-长时光伏消纳的液化空气储能系统建模及经济性评估[J]. 南方电网技术, 2023, 17(12): 90-100, 118. |
YOU G Z, CHEN Y, CHEN X Y, et al. Modeling and economic evaluation of liquid air energy storage system considering short-term load peak shaving and long-term photovoltaic accommodation[J]. Southern Power System Technology, 2023, 17(12): 90-100, 118. | |
16 | 朱振山, 盛明鼎, 陈哲盛. 计及液态空气储能与综合需求响应的综合能源系统低碳经济调度[J]. 电力自动化设备, 2022, 42(12): 1-8. |
ZHU Z S, SHENG M D, CHEN Z S. Low-carbon economic dispatching of integrated energy system considering liquid air energy storage and integrated demand response[J]. Electric Power Automation Equipment, 2022, 42(12): 1-8. | |
17 | 韦古强, 胡从川, 刘乙学, 等. 基于液化空气储能的综合能源系统经济性分析[J]. 储能科学与技术, 2021, 10(6): 2403-2410. |
WEI G Q, HU C C, LIU Y X, et al. Economic analysis of integrated energy system based on liquid air energy storage[J]. Energy Storage Science and Technology, 2021, 10(6): 2403-2410. | |
18 | LIANG T, WEBLEY P A, CHEN Y C, et al. The optimal design and operation of a hybrid renewable micro-grid with the decoupled liquid air energy storage[J]. Journal of Cleaner Production, 2022, 334: 130189. |
19 | WANG C, AKKURT N, ZHANG X S, et al. Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating[J]. Applied Energy, 2020, 275: 115392. |
20 | 阿热帕提·艾尼瓦尔, 陈洁, 廖跃洪, 等. 含深冷液化空气储能的综合能源系统低碳经济调度[J]. 热力发电, 2022, 51(1): 180-189. |
ARAFAT Anwar, CHEN J, LIAO Y H, et al. Low-carbon economic dispatch of integrated energy system with LAES[J]. Thermal Power Generation, 2022, 51(1): 180-189. | |
21 | VECCHI A, NAUGHTON J, LI Y L, et al. Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services—Analysis of optimal scheduling and sizing through MILP modelling with integrated thermodynamic performance[J]. Energy, 2020, 200: 117500. |
22 | SHE X H, PENG X D, NIE B J, et al. Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression[J]. Applied Energy, 2017, 206: 1632-1642. |
23 | 金泰, 李娜, 秦建华, 等. 基于混合整数非线性规划的综合能源系统优化配置研究[J]. 热力发电, 2021, 50(8): 131-140. |
JIN T, LI N, QIN J H, et al. Optimization allocation of integrated energy system based on mixed integer nonlinear programming[J]. Thermal Power Generation, 2021, 50(8): 131-140. | |
24 | 许周, 孙永辉, 谢东亮, 等. 计及电/热柔性负荷的区域综合能源系统储能优化配置[J]. 电力系统自动化, 2020, 44(2): 53-59. |
XU Z, SUN Y H, XIE D L, et al. Optimal configuration of energy storage for integrated region energy system considering power/thermal flexible load[J]. Automation of Electric Power Systems, 2020, 44(2): 53-59. | |
25 | 赵瑾, 雍静, 郇嘉嘉, 等. 基于长时间尺度的园区综合能源系统随机规划[J]. 电力自动化设备, 2020, 40(3): 62-67. |
ZHAO J, YONG J, HUAN J J, et al. Stochastic planning of park-level integrated energy system based on long time-scale[J]. Electric Power Automation Equipment, 2020, 40(3): 62-67. |
[1] | Yangyang XIONG, Aiqing YU, Yufei WANG, Hua XUE. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties [J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. |
[2] | Junhong HAO, Xiaoze DU, Chao XU, Xing JU, Wanli XIAO, Qun CHEN, Yongping YANG. Course construction and practice of “energy storage and integrated energy system” for energy-storage science and engineering major in emerging engineering education [J]. Energy Storage Science and Technology, 2024, 13(3): 1074-1082. |
[3] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[4] | Haodong JIAO, Aiqing YU, Yufei WANG. Low-carbon economic dispatch of an integrated energy system considering battery swapping stations [J]. Energy Storage Science and Technology, 2023, 12(10): 3254-3264. |
[5] | Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. |
[6] | Junwei WANG, Yi REN, Zun GUO, Yan ZHANG. Optimal scheduling of integrated energy system considering integrated demand response and reward and punishment ladder carbon trading [J]. Energy Storage Science and Technology, 2022, 11(7): 2177-2187. |
[7] | Hao LI, Chang LIU, Bo MIAO, Jing ZHANG. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(5): 1482-1491. |
[8] | Heng LUO, Xiao YAN, Qin WANG, Bo HU. Charging and discharging strategy of battery energy storage in the charging station with the presence of photovoltaic [J]. Energy Storage Science and Technology, 2022, 11(1): 275-282. |
[9] | Guqiang WEI, Congchuan HU, Yixue LIU, Shuangshuang CUI, Hong LI. Economic analysis of integrated energy system based on liquid air energy storage [J]. Energy Storage Science and Technology, 2021, 10(6): 2403-2410. |
[10] | BAI Wengang, ZHANG Chun, ZHANG Lei, YANG Yu, ZHANG Yifan, LI Hongzhi. Thermodynamic analysis of novel hybrid liquid air energy storage system combined with ORC [J]. Energy Storage Science and Technology, 2019, 8(5): 880-885. |
[11] | JIN Yi1, WANG Le1, YANG Cenyu1, SONG Jie1, XU Chao2. Cycle performance of a packed bed based cold storage device [J]. Energy Storage Science and Technology, 2017, 6(4): 708-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||