Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 2952-2962.doi: 10.19799/j.cnki.2095-4239.2024.0658
Previous Articles Next Articles
Bingxiang SUN1,2(), Xin YANG1,2, Xingzhen ZHOU1, Shichang MA1,2, Zhihao WANG1, Weige ZHANG1
Received:
2024-07-15
Revised:
2024-08-15
Online:
2024-09-28
Published:
2024-09-20
Contact:
Bingxiang SUN
E-mail:bxsun@bjtu.edu.cn
CLC Number:
Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962.
1 | 安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(1): 22-42. DOI: 10.13374/j.issn2095-9389.2019.01.003. |
AN F Q, ZHAO H L, CHENG Z, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. DOI: 10.13374/j.issn2095-9389.2019.01.003. | |
2 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. DOI: 10.12028/j.issn.2095-4239.2018.0167. |
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. DOI: 10.12028/j.issn.2095-4239.2018.0167. | |
3 | 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. DOI: 10.19799/j.cnki.2095-4239.2020.0345. |
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. DOI: 10.19799/j.cnki.2095-4239.2020.0345. | |
4 | KARIMI G, DEHGHAN A R. Thermal analysis of high-power lithium-ion battery packs using flow network approach[J]. International Journal of Energy Research, 2014, 38(14): 1793-1811. DOI: 10.1002/er.3173. |
5 | JIANG Z Y, QU Z G, ZHANG J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy[J]. Applied Energy, 2020, 268: 115007. DOI: 10.1016/j.apenergy.2020.115007. |
6 | ZOU C F, ZHANG L, HU X S, et al. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors[J]. Journal of Power Sources, 2018, 390: 286-296. DOI: 10.1016/j.jpowsour.2018.04.033. |
7 | WANG Z L, FENG G J, ZHEN D, et al. A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles[J]. Energy Reports, 2021, 7: 5141-5161. DOI: 10.1016/j.egyr.2021.08.113. |
8 | ZHOU Y, WANG B C, LI H X, et al. A surrogate-assisted teaching-learning-based optimization for parameter identification of the battery model[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5909-5918. DOI: 10.1109/TII.2020.3038949. |
9 | LI Y M, LIU G X, DENG W, et al. Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods[J]. Applied Energy, 2024, 367: 123437. DOI: 10.1016/j.apenergy.2024.123437. |
10 | LI W H, CAO D C, JÖST D, et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J]. Applied Energy, 2020, 269: 115104. DOI: 10.1016/j.apenergy.2020.115104. |
11 | SANTHANAGOPALAN S, GUO Q Z, WHITE R E. Parameter estimation and model discrimination for a lithium-ion cell[J]. Journal of the Electrochemical Society, 2007, 154(3): A198. DOI: 10.1149/1.2422896. |
12 | BOOVARAGAVAN V, HARINIPRIYA S, SUBRAMANIAN V R. Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models[J]. Journal of Power Sources, 2008, 183(1): 361-365. DOI: 10.1016/j.jpowsour.2008.04.077. |
13 | SHUI Z Y, LI X H, FENG Y, et al. Combining reduced-order model with data-driven model for parameter estimation of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2023, 70(2): 1521-1531. DOI: 10.1109/TIE.2022.3157980. |
14 | FAN G D. Systematic parameter identification of a control-oriented electrochemical battery model and its application for state of charge estimation at various operating conditions[J]. Journal of Power Sources, 2020, 470: 228153. DOI: 10.1016/j.jpowsour.2020.228153. |
15 | VAN THIEU N, MIRJALILI S. MEALPY: An open-source library for latest meta-heuristic algorithms in Python[J]. Journal of Systems Architecture, 2023, 139: 102871. DOI: 10.1016/j.sysarc.2023. 102871. |
16 | ONG I J, NEWMAN J. Double-layer capacitance in a dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1999, 146(12): 4360-4365. DOI: 10.1149/1.1392643. |
17 | SUTHAR B, NORTHROP P W C, RIFE D, et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. Journal of the Electrochemical Society, 2015, 162(9): A1708-A1717. DOI: 10.1149/2.0061509jes. |
18 | HUANG J, GE H, LI Z, et al. An agglomerate model for the impedance of secondary particle in lithium-ion battery electrode[J]. Journal of the Electrochemical Society, 2014, 161(8): E3202-E3215. DOI: 10.1149/2.027408jes. |
19 | HUANG J, LI Z, ZHANG J B, et al. An analytical three-scale impedance model for porous electrode with agglomerates in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(4): A585-A595. DOI: 10.1149/2.0241504jes. |
20 | ZHOU X Z, WANG Z H, ZHANG W G, et al. Construction of simplified impedance model based on electrochemical mechanism and identification of mechanism parameters[J]. Journal of Energy Storage, 2024, 76: 109673. DOI: 10.1016/j.est.2023.109673. |
21 | LANDESFEIND J, GASTEIGER H A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(14): A3079-A3097. DOI: 10.1149/2.0571912jes. |
22 | LI W H, DEMIR I, CAO D C, et al. Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence[J]. Energy Storage Materials, 2022, 44: 557-570. DOI: 10.1016/j.ensm.2021.10.023. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[12] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[13] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[14] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[15] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||