Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3742-3754.doi: 10.19799/j.cnki.2095-4239.2025.0301
• Energy Storage System and Engineering • Previous Articles Next Articles
Changhao LI1(
), Zhicheng CAO2, Shuping WANG1, Heng XIE3, Weixin ZHANG2(
), Yuancheng CAO2
Received:2025-03-26
Revised:2025-05-11
Online:2025-10-28
Published:2025-10-20
Contact:
Weixin ZHANG
E-mail:346550617@qq.com;weixinzhang@hust.edu.cn
CLC Number:
Changhao LI, Zhicheng CAO, Shuping WANG, Heng XIE, Weixin ZHANG, Yuancheng CAO. Warning method for battery-overcharge thermal runaway based on a temporal pattern attention mechanism and an isolated forest algorithm[J]. Energy Storage Science and Technology, 2025, 14(10): 3742-3754.
Table 2
Pseudo code of TPA-BiLSTM algorithm"
| Algorithm: TPA-BiLSTM(x) |
|---|
Input: x: Input battery character series Output: y: Final forecast value generated by matrix multiplication H← []; forxt in x do ht’ ← BiLSTM (xt,ht ); H.append (ht'); end HC ← 1D-CNN (H); S ← []; forHi in HC do α ← HiT × Wa × ht; α ← Sigmoid (α); S.append (α); end NS ← normalize (S); Vt ← HC * NS; concatenated vector ← concatenate (Vt, ht ); y ← Linear (concatenated vector); returny; |
| [1] | 喻航, 张英, 徐超航, 等. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022.0116. |
| YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022.0116. | |
| [2] | 管敏渊, 沈建良, 徐国华, 等. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. DOI: 10.19799/j.cnki.2095-4239.2022.0719. |
| GUAN M Y, SHEN J L, XU G H, et al. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. DOI: 10.19799/j.cnki.2095-4239.2022.0719. | |
| [3] | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
| [4] | 周剑文. 锂离子电池热失控建模与热蔓延抑制研究[D]. 济南: 山东大学, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004758. |
| ZHOU J W. Thermal runaway modeling and thermal spread suppression of lithium-ion batteries[D]. Jinan: Shandong University, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004758. | |
| [5] | 李钊, 陈才星, 牛慧昌, 等. 锂离子电池热失控早期预警特征参数分析[J]. 消防科学与技术, 2020, 39(2): 146-149. |
| LI Z, CHEN C X, NIU H C, et al. Characteristic parameter analysis of thermal runaway early warning of lithium-ion battery[J]. Fire Science and Technology, 2020, 39(2): 146-149. | |
| [6] | OMAER FARUQ GONI M, MONDAL M N I, RIAZUL ISLAM S M, et al. Diagnosis of malaria using double hidden layer extreme learning machine algorithm with CNN feature extraction and parasite inflator[J]. IEEE Access, 2023, 11: 4117-4130. |
| [7] | 王娜, 李强. 大数据分析管理系统在新能源汽车事故分析中的应用[J]. 时代汽车, 2024(2): 192-194. DOI: 10.3969/j.issn.1672-9668. 2024.02.061. |
| WANG N, LI Q. Application of big data analysis management system in new energy vehicle accident analysis[J]. Auto Time, 2024(2): 192-194. DOI: 10.3969/j.issn.1672-9668.2024.02.061. | |
| [8] | 周炜航, 叶青, 叶蕾, 等. 锂离子电池内温度场健康状态分布式光纤原位监测技术研究[J]. 中国激光, 2020, 47(12): 1204002. DOI: 10.3788/CJL202047.1204002. |
| ZHOU W H, YE Q, YE L, et al. Distributed optical fiber in situ monitoring technology for a healthy temperature field in lithium ion batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002. DOI: 10.3788/CJL202047.1204002. | |
| [9] | 蒋建杰, 楼平, 徐国华, 等. 基于预测误差的锂离子电池热失控预警方法研究[J]. 储能科学与技术, 2024, 13(11): 4187-4197. DOI: 10.19799/j.cnki.2095-4239.2024.0539. |
| JIANG J J, LOU P, XU G H, et al. Research on lithium-ion battery thermal runaway early warning method based on prediction error[J]. Energy Storage Science and Technology, 2024, 13(11): 4187-4197. DOI: 10.19799/j.cnki.2095-4239.2024.0539. | |
| [10] | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
| [11] | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI: 10.1016/j.joule.2020.05.016. |
| [12] | 杨启帆, 马宏忠, 段大卫, 等. 基于气体特性的锂离子电池热失控在线预警方法[J]. 高电压技术, 2022, 48(3): 1202-1211. DOI: 10.13336/j.1003-6520.hve.20210261. |
| YANG Q F, MA H Z, DUAN D W, et al. Thermal runaway online warning method for lithium-ion battery based on gas characteristics[J]. High Voltage Engineering, 2022, 48(3): 1202-1211. DOI: 10.13336/j.1003-6520.hve.20210261. | |
| [13] | 梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(1): 202-209. DOI: 10.19799/j.cnki.2095-4239.2020.0249. |
| MEI W X, DUAN Q L, WANG Q S, et al. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. DOI: 10.19799/j.cnki.2095-4239.2020.0249. | |
| [14] | PAN Y, FENG X N, ZHANG M X, et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections[J]. Journal of Cleaner Production, 2020, 255: 120277. DOI: 10.1016/j.jclepro.2020.120277. |
| [15] | GAO W K, ZHENG Y J, OUYANG M G, et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2132-2142. DOI: 10.1109/TIE.2018.2838109. |
| [16] | FENG X N, WENG C H, OUYANG M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. DOI: 10.1016/j.apenergy. 2015.10.019. |
| [17] | 黄彧, 王占国, 张言茹, 等. 基于离群点检测的动力电池一致性快速辨识方法[J]. 电测与仪表, 2023, 60(10): 66-72. DOI: 10.19753/j.issn1001-1390.2023.10.011. |
| HUANG Y, WANG Z G, ZHANG Y R, et al. A fast identification method of power battery consistency based on outlier detection[J]. Electrical Measurement & Instrumentation, 2023, 60(10): 66-72. DOI: 10.19753/j.issn1001-1390.2023.10.011. | |
| [18] | 刘鹏, 吴志强, 张照生, 等. 基于电压频域特征和异常系数的动力电池故障诊断方法[J]. 中国公路学报, 2022, 35(8): 89-104. DOI: 10.19721/j.cnki.1001-7372.2022.08.009. |
| LIU P, WU Z Q, ZHANG Z S, et al. Fault diagnosis for battery systems based on voltage frequency-domain indicator and abnormal coefficient[J]. China Journal of Highway and Transport, 2022, 35(8): 89-104. DOI: 10.19721/j.cnki.1001-7372.2022.08.009. | |
| [19] | HONG J C, WANG Z P, CHEN W, et al. Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks[J]. Applied Energy, 2019, 254: 113648. DOI: 10.1016/j.apenergy.2019.113648. |
| [20] | ZHOU Z X, HUBER N R, INOUE A, et al. Multislice input for 2D and 3D residual convolutional neural network noise reduction in CT[J]. Journal of Medical Imaging, 2023, 10(1): 014003. DOI: 10.1117/1.JMI.10.1.014003. |
| [21] | 姚越, 刘达. 基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测[J]. 现代电力, 2022, 39(2): 212-218. DOI: 10. 19725/j.cnki.1007-2322.2021.0108. |
| YAO Y, LIU D. Short-term wind power forecasting based on attention mechanism of CNN-LSTM[J]. Modern Electric Power, 2022, 39(2): 212-218. DOI: 10.19725/j.cnki.1007-2322.2021.0108. | |
| [22] | CHANG S Z, DU B, ZHANG L P. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4033-4046. DOI: 10.1109/TGRS.2019.2960391. |
| [23] | OJO O, LANG H X, KIM Y, et al. A neural network based method for thermal fault detection in lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4068-4078. DOI: 10.1109/TIE.2020.2984980. |
| [24] | LI D, LIU P, ZHANG Z S, et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525. DOI: 10.1109/TPEL.2022. 3150026. |
| [25] | CHEN Y, XU M, WU Z, et al. Enhanced CNN-LSTM model with self-attention mechanism for time series forecasting[J]. IEEE Access, 2023, 11: 34567-34578. |
| [1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
| [2] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
| [3] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
| [4] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
| [5] | Yihua QIAN, Yaohong ZHAO, Qing WANG, Peng GUO, Dating PEI, Yirou ZENG. Research progress and prospect of sodium halide solid-state electrolytes [J]. Energy Storage Science and Technology, 2025, 14(9): 3389-3401. |
| [6] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
| [7] | Yuxi CHU, Chang MA, Hongguang CHEN, Shaoyu ZHANG, Ping ZHUO. Thermal runaway and gas production characteristics of a 180 Ah sodium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(9): 3611-3618. |
| [8] | Chengshan XU, Han LI, Yan WANG, Languang LU, Xuning FENG, Minggao OUYANG. Research on fire propagation characteristics and energy transfer mechanisms during the triggering process in double-layer energy storage batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3552-3563. |
| [9] | Mingxuan LIU, Wentao CHEN, Shaopeng SHEN, Shijie ZHANG, zhen WEI, Biao MA, Danhua LI, Shiqiang LIU, Fang WANG. Research on accelerated aging and safety characteristics of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2025, 14(9): 3530-3537. |
| [10] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
| [11] | Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268. |
| [12] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
| [13] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
| [14] | Shuai ZHANG, Tao ZHANG, Wei PEI, Tengfei MA, Hao XIAO, Jie SHI, Chuanxin HE. Collaborative optimization of shared energy storage based on prosumers’ decision-making in a stochastic game framework [J]. Energy Storage Science and Technology, 2025, 14(8): 3216-3228. |
| [15] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||