Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3824-3838.doi: 10.19799/j.cnki.2095-4239.2025.0310
• Energy Storage System and Engineering • Previous Articles Next Articles
Yaqing HE1(
), Weiqing WANG1(
), Haocheng WANG2, Yingtian CHI3, Jiarong LI3, Shan HE1, Bowen LIU1, Xinyan ZHANG1
Received:2025-03-31
Revised:2025-04-09
Online:2025-10-28
Published:2025-10-20
Contact:
Weiqing WANG
E-mail:2363423816@qq.com;wwq59@xju.edu.cn
CLC Number:
Yaqing HE, Weiqing WANG, Haocheng WANG, Yingtian CHI, Jiarong LI, Shan HE, Bowen LIU, Xinyan ZHANG. Optimization of an SOC green hydrogen production storage and transportation system based on electricity-heat-gas multienergy coupling[J]. Energy Storage Science and Technology, 2025, 14(10): 3824-3838.
| [1] | 熊阳阳, 于艾清, 王育飞, 等. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958. |
| XIONG Y Y, YU A Q, WANG Y F, et al. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties[J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. DOI: 10.19799/j.cnki.2095-4239.2023.0958. | |
| [2] | 林旗力, 陈珍, 王晓虎, 等. 基于"电-氢-电" 过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. DOI: 10. 19799/j.cnki.2095-4239.2023.0955. |
| LIN Q L, CHEN Z, WANG X H, et al. Economic analysis of large-scale hydrogen energy storage based on the "electric-hydrogen-electric" process[J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. DOI: 10.19799/j.cnki.2095-4239. 2023. 0955. | |
| [3] | PAN G S, GU W, LU Y P, et al. Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2662-2676. DOI: 10.1109/TSTE.2020.2970078. |
| [4] | XING X T, LIN J, WAN C, et al. Model predictive control of LPC-looped active distribution network with high penetration of distributed generation[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1051-1063. DOI: 10.1109/TSTE. 2016. 2647259. |
| [5] | XING X T, LIN J, SONG Y H, et al. Intermodule management within a large-capacity high-temperature power-to-hydrogen plant[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1432-1442. DOI: 10.1109/TEC.2020.2978552. |
| [6] | 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. DOI: 10.19705/j.cnki.issn2096-5125.2018.03.001. |
| XING X T, LIN J, SONG Y H, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. DOI: 10. 19705/j.cnki.issn2096-5125.2018.03.001. | |
| [7] | 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027. DOI: 10. 13334/j.0258-8013.pcsee.212956. |
| JIANG Y W, YANG G M, CHEN Y X, et al. Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027. DOI: 10.13334/j.0258-8013.pcsee.212956. | |
| [8] | 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42(17): 6155-6170. DOI: 10.13334/j.0258-8013.pcsee.211634. |
| GAO C W, WANG W, CHEN T. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170. DOI: 10.13334/j.0258-8013.pcsee.211634. | |
| [9] | 刘毓伶, 赵兴勇, 刘立. 含信息间隙决策理论的电热气联合系统优化调度[J]. 电力系统及其自动化学报, 2024, 36(12): 45-53. DOI: 10.19635/j.cnki.csu-epsa.001440. |
| LIU Y L, ZHAO X Y, LIU L. Optimization and scheduling of power, heat and gas combination system based on information gap decision theory[J]. Proceedings of the CSU-EPSA, 2024, 36(12): 45-53. DOI: 10.19635/j.cnki.csu-epsa.001440. | |
| [10] | 张大海, 贠韫韵, 王小君, 等. 考虑广义储能及光热电站的电热气互联综合能源系统经济调度[J]. 电力系统自动化, 2021, 45(19): 33-42. |
| ZHANG D H, YUN Y Y, WANG X J, et al. Economic dispatch of integrated electricity-heat-gas energy system considering generalized energy storage and concentrating solar power plant[J]. Automation of Electric Power Systems, 2021, 45(19): 33-42. | |
| [11] | 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033. DOI: 10.13334/j.0258-8013.pcsee.201307. |
| LI J R, LIN J, XING X T, et al. Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033. DOI: 10.13334/j.0258-8013.pcsee.201307. | |
| [12] | DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al. Dynamic modelling of alkaline self-pressurized electrolyzers: A phenomenological-based semiphysical approach[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22394-22407. DOI: 10.1016/j.ijhydene.2020.06.038. |
| [13] | 林俐, 郑馨姚, 周龙文. 基于燃氢燃气轮机的风光火储多能互补优化调度[J]. 电网技术, 2022, 46(8): 3007-3022. DOI: 10.13335/j.1000-3673.pst.2022.0059. |
| LIN L, ZHENG X Y, ZHOU L W. Wind-PV-thermal-storage multi-energy complementary optimal dispatching based on hydrogen gas turbine[J]. Power System Technology, 2022, 46(8): 3007-3022. DOI: 10.13335/j.1000-3673.pst.2022.0059. | |
| [14] | 李荦一, 韩莹, 李奇, 等. 计及效率特性的电-氢混合储能直流微网经济下垂控制策略[J]. 电力系统保护与控制, 2022, 50(7): 69-80. DOI: 10.19783/j.cnki.pspc.210944. |
| LI L Y, HAN Y, LI Q, et al. Economic droop control strategy of a hybrid electric-hydrogen DC microgrid considering efficiency characteristics[J]. Power System Protection and Control, 2022, 50(7): 69-80. DOI: 10.19783/j.cnki.pspc.210944. | |
| [15] | 高超, 姚秀萍, 刘日新, 等. 基于自适应控制的风光制储氢协调运行策略研究[J]. 太阳能学报, 2023, 44(8): 102-109. DOI: 10.19912/j.0254-0096.tynxb.2022-0489. |
| GAO C, YAO X P, LIU R X, et al. Research on coordinated operation strategy of wind-solar hydrogen production and storage based on adaptive control[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 102-109. DOI: 10.19912/j.0254-0096.tynxb.2022-0489. | |
| [16] | 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496. DOI: 10.13334/j.0258-8013.pcsee.220655. |
| ZHENG B, BAI Z, YUAN Y, et al. Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496. DOI: 10.13334/j.0258-8013.pcsee.220655. | |
| [17] | LASIA A. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518. DOI: 10.1016/j.ijhydene.2019.05.183. |
| [18] | CHI Y T, QIU Y W, LIN J, et al. A robust surrogate model of a solid oxide cell based on an adaptive polynomial approximation method[J]. International Journal of Hydrogen Energy, 2020, 45(58): 32949-32971. DOI: 10.1016/j.ijhydene.2020.09.116. |
| [19] | 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264. DOI: 10.13335/j.1000-3673.pst.2019.2468. |
| CUI Y, YAN S, ZHONG W Z, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11): 4254-4264. DOI: 10.13335/j.1000-3673.pst.2019.2468. | |
| [20] | 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75. DOI: 10.19912/j.0254-0096.tynxb.2019-1327. |
| ZHANG Y, PENG Y G, WEI W. Coordination control for pv, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 67-75. DOI: 10.19912/j.0254-0096.tynxb.2019-1327. | |
| [21] | 王雅倩, 任娜, 徐宗磊, 等. 电/热/气多能转换的可逆固体氧化物燃料电池信息物理融合建模与仿真[J]. 电网技术, 2018, 42(11): 3535-3542. DOI: 10.13335/j.1000-3673.pst.2018.1008. |
| WANG Y Q, REN N, XU Z L, et al. Cyber-physical system modeling and simulation of power-heat-gas multi-energy conversion for reversible solid oxide fuel cell[J]. Power System Technology, 2018, 42(11): 3535-3542. DOI: 10.13335/j.1000-3673.pst.2018.1008. | |
| [22] | FU C, LIN J, SONG Y H, et al. Optimal operation of an integrated energy system incorporated with HCNG distribution networks[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2141-2151. DOI: 10.1109/TSTE.2019.2951701. |
| [23] | FRANK E, GORRE J, RUOSS F, et al. Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems[J]. Applied Energy, 2018, 218: 217-231. DOI: 10.1016/j.apenergy. 2018.02.105. |
| [24] | 蔡国伟, 西禹霏, 杨德友, 等. 基于风-氢的气电热联合系统模型的经济性能分析[J]. 太阳能学报, 2019, 40(5): 1465-1471. DOI: 10. 19912/j.0254-0096.2019.05.039. |
| CAI G W, XI Y F, YANG D Y, et al. Economic performance analysis of model of combined gas-heat-power system based on wind-hydrogen[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1465-1471. DOI: 10.19912/j.0254-0096.2019.05.039. | |
| [25] | 严思韵, 周登极. 综合能源天然气网混氢输运的仿真与调度综述[J]. 中国电机工程学报, 2022, 42(24): 8816-8832. DOI: 10.13334/j. 0258-8013.pcsee.211277. |
| YAN S Y, ZHOU D J. Review of simulation and scheduling of hydrogen-blended transportation in natural gas network of integrated energy system[J]. Proceedings of the CSEE, 2022, 42(24): 8816-8832. DOI: 10.13334/j.0258-8013.pcsee.211277. | |
| [26] | 杨紫娟, 田雪沁, 吴伟丽, 等. 考虑电解槽组合运行的风电-氢能-HCNG耦合网络容量优化配置[J]. 电力系统自动化, 2023, 47(12): 76-85. |
| YANG Z J, TIAN X Q, WU W L, et al. Optimal capacity configuration of wind-hydrogen-HCNG coupled network considering combined electrolyzer operation[J]. Automation of Electric Power Systems, 2023, 47(12): 76-85. | |
| [27] | 许彤, 吴浩志, 陈林, 等. 基于FLUENT模拟的储罐掺氢装置掺混过程及掺氢比对管道运行参数影响研究[J]. 力学与实践, 2023, 45(2): 314-324. |
| XU T, WU H Z, CHEN L, et al. Study of blending process and hydrogen ratio for the hydrogen blending device in the tank on the pipeline operation parameters by fluent simulations[J]. Mechanics in Engineering, 2023, 45(2): 314-324. | |
| [28] | 邢学韬. 面向新能源消纳的高温电制氢系统建模与变负载运行优化[D]. 北京: 清华大学, 2020.XING X T. Modeling and load-varying operation of a high-temperature power-to-hydrogen system for renewable integration[D]. Beijing: Tsinghua University, 2020. |
| [29] | 赫亚庆, 张新燕, 王维庆, 等. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483. |
| HE Y Q, ZHANG X Y, WANG W Q, et al. Research on modeling and control method of high-temperature electrolytic hydrogen production system based on new energy absorption[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483. | |
| [30] | 池映天. 面向灵活调节的固体氧化物电堆建模与控制[D]. 北京: 清华大学, 2023.CHI Y T. Modeling and control of solid oxide cell stacks for flexible regulation[D]. Beijing: Tsinghua University, 2023. |
| [1] | Hao SUN, Zuoxia XING, Weining WU, Mingqi LI, Zhi ZHU, Gaohan WANG. Research on configuration strategies for wind-solar-battery-hydrogen hybrid power plants considering electricity market trading mechanisms [J]. Energy Storage Science and Technology, 2025, 14(7): 2801-2812. |
| [2] | Ming LI, Wenliang YIN, Yongkang LI, Chenye SUN, Jiajia CHEN. Low-carbon capacity optimal configuration of microgrid with hydrogen energy storage under multi-source coupling uncertainties [J]. Energy Storage Science and Technology, 2025, 14(5): 1969-1981. |
| [3] | Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process [J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. |
| [4] | Chu ZHANG, Dongcai CHEN, Xiangping CHEN, Yongxiang CAI. Economic benefit analysis of optimal allocation of energy storage in multiple application scenarios [J]. Energy Storage Science and Technology, 2024, 13(6): 2078-2088. |
| [5] | Siyuan HUANG, Chen WANG, Ting LIANG, Zhu JIANG, Jiajing LI, Xiaohui SHE, Xiaosong ZHANG. Research on optimal configuration for integrated energy system with liquid air energy storage combined heat and power supply [J]. Energy Storage Science and Technology, 2024, 13(6): 1929-1939. |
| [6] | HUO Xianxu, WANG Jing, JIANG Ling, XU Qingshan. Review on key technologies and applications of hydrogen energy storage system [J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||