Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1270-1285.doi: 10.19799/j.cnki.2095-4239.2024.0859
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Daibing SHEN1,2(), Jiahao HAO1,2, Yanchang SONG1,2, Junling YANG1, Zhentao ZHANG1,3,4, Yunkai YUE1,3,4(
)
Received:
2024-09-12
Revised:
2024-10-25
Online:
2025-03-28
Published:
2025-04-28
Contact:
Yunkai YUE
E-mail:shendaibing22@mails.ucas.ac.cn;yueyunkai@mail.ipc.ac.cn
CLC Number:
Daibing SHEN, Jiahao HAO, Yanchang SONG, Junling YANG, Zhentao ZHANG, Yunkai YUE. Centripetal turbine design and structural parameter optimization for hundred-kilowatt-class carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2025, 14(3): 1270-1285.
1 | 李祎然, 李文, 常学煜, 等. 基于变工质模化方法的超临界CO2储能透平膨胀机相似特性分析[J]. 储能科学与技术, 2021, 10(5): 1815-1823. |
LI Y R, LI W, CHANG X Y, et al. Modeling of similar characteristics of turbo-expander in supercritical CO2 energy storage based on different working fluids[J]. Energy Storage Science and Technology, 2021, 10(5): 1815-1823. | |
2 | WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823. DOI:10.1016/j.applthermaleng.2015.08.081. |
3 | LIU H, HE Q, BORGIA A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159. DOI:10.1016/j.enconman.2016.08.096. |
4 | LI F H, XING L L, SU W, et al. An idea to construct integrated energy systems of data center by combining CO2 heat pump and compressed CO2 energy storage[J]. Journal of Energy Storage, 2024, 75: 109581. DOI:10.1016/j.est.2023.109581. |
5 | LIU Z Y, GUAN H W, SHAO J W, et al. Thermodynamic and advanced exergy analysis of a trans-critical CO2 energy storage system integrated with heat supply and solar energy[J]. Energy, 2024, 302: 131507. DOI:10.1016/j.energy.2024.131507. |
6 | 孙冠珂, 李文, 张雪辉, 等. 向心涡轮进气结构的气动性能及损失机理[J]. 航空动力学报, 2015, 30(8): 1926-1935. DOI: 10.13224/j.cnki.jasp.2015.08.016. |
SUN G K, LI W, ZHANG X H, et al. Aerodynamic performance and losses mechanism of radial turbine intake components[J]. Journal of Aerospace Power, 2015, 30(8): 1926-1935. DOI: 10.13224/j.cnki.jasp.2015.08.016. | |
7 | ZHOU A Z, SONG J, LI X S, et al. Aerodynamic design and numerical analysis of a radial inflow turbine for the supercritical carbon dioxide Brayton cycle[J]. Applied Thermal Engineering, 2018, 132: 245-255. DOI:10.1016/j.applthermaleng.2017.12.106. |
8 | LV G C, YANG J G, SHAO W Y, et al. Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model[J]. Energy Conversion and Management, 2018, 165: 827-839. DOI:10.1016/j.enconman. 2018.03.005. |
9 | UUSITALO A, TURUNEN-SAARESTI T, GRÖNMAN A. Design and loss analysis of radial turbines for supercritical CO2 Brayton cycles[J]. Energy, 2021, 230: 120878. DOI:10.1016/j.energy. 2021.120878. |
10 | ZHOU K H, WANG J F, XIA J X, et al. Design and performance analysis of a supercritical CO2 radial inflow turbine[J]. Applied Thermal Engineering, 2020, 167: 114757. DOI:10.1016/j.applthermaleng.2019.114757. |
11 | 施东波, 刘天源, 谢永慧, 等. 基于Gauss过程回归的超临界二氧化碳透平设计-优化方法[J]. 动力工程学报, 2019, 39(11): 876-883, 892. |
SHI D B, LIU T Y, XIE Y H, et al. Design and optimization of an S-CO2 turbine based on Gauss process regression[J]. Journal of Chinese Society of Power Engineering, 2019, 39(11): 876-883, 892. | |
12 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
13 | 张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. |
ZHANG J J, LI X Q, ZHANG Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. | |
14 | 赵攀, 温玉聪, 娄聚伟, 等. 超临界二氧化碳向心透平设计与热流固耦合研究[J]. 西安交通大学学报, 2022, 56(11): 83-94. |
ZHAO P, WEN Y C, LOU J W, et al. Design and thermal-fluid-solid coupling investigation of supercritical carbon dioxide radial inflow turbine[J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 83-94. | |
15 | 奚忠. 径流透平气动设计及优化方法研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2012. |
XI Z. Study on aerodynamic design and optimization method of radial flow turbine[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012. | |
16 | 邢浩. 超临界二氧化碳向心透平一维优化设计及变工况性能分析[D]. 天津: 天津理工大学, 2022. DOI: 10.27360/d.cnki.gtlgy. 2022.000521. |
XING H. One-dimensional optimization design and off-design performance analysis of supercritical carbon dioxide centripetal turbine[D]. Tianjin: Tianjin University of Technology, 2022. DOI: 10.27360/d.cnki.gtlgy.2022.000521. | |
17 | YU Z T, WANG C J, RONG F H, et al. Optimal coupling design for organic Rankine cycle and radial turbine rotor using CFD modeling, machine learning and genetic algorithm[J]. Energy Conversion and Management, 2023, 275: 116493. DOI:10.1016/j.enconman.2022.116493. |
18 | 孙玉伟, 陈晨, 秦天阳, 等. 高速S-CO2向心透平几何参数优化及变工况特性分析[J]. 中国电机工程学报, 2024, 44(6): 2319-2330. |
SUN Y W, CHEN C, QIN T Y, et al. Geometric parameter optimization and off-design performance analysis of a high-speed S-CO2 radial-inflow turbine[J]. Proceedings of the CSEE, 2024, 44(6): 2319-2330. | |
19 | 王巧珍. 7.5MW超临界二氧化碳向心透平气动设计及性能分析[D]. 北京: 华北电力大学, 2021. DOI: 10.27139/d.cnki.ghbdu. 2021.000328. |
WANG Q Z. Aerodynamic design and performance analysis of 7.5MW supercritical carbon dioxide centripetal turbine[D]. Beijing: North China Electric Power University, 2021. DOI: 10.27139/d.cnki.ghbdu.2021.000328. | |
20 | 张鹍. 有机工质向心透平设计及全工况性能研究[D]. 天津: 天津大学, 2022. DOI: 10.27356/d.cnki.gtjdu.2022.000981. |
ZHANG K. Design of centripetal turbine with organic working fluid and study on its performance under all working conditions[D]. Tianjin: Tianjin University, 2022. DOI: 10.27356/d.cnki.gtjdu. 2022.000981. | |
21 | 陈世雄. 5kW级电涡流制动氦透平膨胀机设计研究[D]. 合肥: 中国科学技术大学, 2021. DOI: 10.27517/d.cnki.gzkju.2021.002647. |
CHEN S X. Design and research of 5kW eddy current braking helium turboexpander[D]. Hefei: University of Science and Technology of China, 2021. DOI: 10.27517/d.cnki.gzkju. 2021. 002647. | |
22 | WANG Z Q, XIE B Q, XIA X X, et al. Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application[J]. Energy, 2023, 265: 126313. DOI:10.1016/j.energy. 2022.126313. |
23 | 王春阳. 70MW级超临界二氧化碳闭式布雷顿循环向心透平设计分析[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.000039. |
WANG C Y. Design and analysis of 70MW supercritical carbon dioxide closed Brayton cycle centripetal turbine[D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.000039. | |
24 | LI B, XIE H P, SUN L C, et al. Optimization design of radial inflow turbine combined with mean-line model and CFD analysis for geothermal power generation[J]. Energy, 2024, 291: 130452. DOI:10.1016/j.energy.2024.130452. |
25 | 邓兰, 左咪, 闫起源, 等. 低温地热源有机朗肯循环系统匹配向心透平数值分析及优化[J]. 机械科学与技术, 2018, 37(10): 1537-1543. DOI: 10.13433/j.cnki.1003-8728.20180060. |
DENG L, ZUO M, YAN Q Y, et al. Numerical analysis and optimization of radial inflow turbine for organic Rankine cycle system of low-temperature geothermal power[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1537-1543. DOI: 10.13433/j.cnki.1003-8728.20180060. | |
26 | PERSKY R, SAURET E. Loss models for on and off-design performance of radial inflow turbomachinery[J]. Applied Thermal Engineering, 2019, 150: 1066-1077. DOI:10.1016/j.applthermaleng. 2019.01.042. |
27 | YAO Y B, FANG S, ZHU S L, et al. Optimal design and tip leakage flow characteristics analysis of radial inflow turbine used in organic Rankine and vapor compression refrigeration system[J]. Energy, 2024, 301: 131668. DOI:10.1016/j.energy. 2024. 131668. |
28 | 霍东晨, 马国骏, 宋义康, 等. 1.5级变几何涡轮非定常流动特性研究[J]. 热能动力工程, 2021, 36(10): 85-97. DOI: 10.16146/j.cnki.rndlgc.2021.10.012. |
HUO D C, MA G J, SONG Y K, et al. Research on unsteady flow characteristics of 1.5 stage variable-geometry turbine[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 85-97. DOI: 10.16146/j.cnki.rndlgc.2021.10.012. | |
29 | 刘祖煜. 压缩空气储能系统向心涡轮启动过程流动特性研究[D]. 北京: 中国科学院大学, 2021. |
LIU Z Y. Study on flow characteristics of centripetal turbine in compressed air energy storage system during start-up[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
30 | 李翔. 1.5级涡轮非定常流动研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. |
LI X. Study on unsteady flow of 1.5-stage turbine[D]. Harbin: Harbin Engineering University, 2010. | |
31 | LU Z K, YANG M Y, PAN L, et al. Influence of unsteady stage-interaction on loss generation in regulated two-stage radial turbines at pulsating conditions[J]. Energy, 2024, 304: 131958. DOI:10.1016/j.energy.2024.131958. |
32 | 杨晓敏. 超临界二氧化碳离心压缩机失稳特性的数值模拟研究[D]. 天津: 天津理工大学, 2023. DOI: 10.27360/d.cnki.gtlgy. 2023. 000508. |
YANG X M. Numerical simulation study on instability characteristics of supercritical carbon dioxide centrifugal compressor[D]. Tianjin: Tianjin University of Technology, 2023. DOI: 10.27360/d.cnki.gtlgy.2023.000508. |
[1] | Tao ZHANG, Jiakai LIU, Tianle DAI, Cheng XU. Comparative analysis of thermal performance of electrothermal energy storage and liquid energy storage based on carbon dioxide [J]. Energy Storage Science and Technology, 2024, 13(5): 1554-1563. |
[2] | Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. |
[3] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[4] | Jiahao HAO, Yunkai YUE, Jiajun ZHANG, Junling YANG, Xiaoqiong LI, Yanchang SONG, Zhentao ZHANG. Research status and development prospect of carbon dioxide energy-storage technology [J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. |
[5] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[6] | LIU Zhen, WU Huawei, LIN Xin, SONG Panpan. Unsteady flows of a scroll expander under various types of expansion process [J]. Energy Storage Science and Technology, 2019, 8(6): 1241-1246. |
[7] | LIU Zhen, WU Huawei, ZHANG Jin, KUANG Yong. Numerical investigations on unsteady flow of a scroll expander for compressed air energy storage [J]. Energy Storage Science and Technology, 2019, 8(2): 357-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||