Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1394-1412.doi: 10.19799/j.cnki.2095-4239.2024.0933
• Energy Storage Materials and Devices • Previous Articles Next Articles
Bin YANG(), Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG(
), Daliang QIAO, Yang SUN, Youping LI(
)
Received:
2024-10-08
Revised:
2024-11-07
Online:
2025-04-28
Published:
2025-05-20
Contact:
Qirong YANG, Youping LI
E-mail:yangbinkuai@163.com;luyingyi125@163.com;youpingli@qdu.edu.cn
CLC Number:
Bin YANG, Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG, Daliang QIAO, Yang SUN, Youping LI. Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger[J]. Energy Storage Science and Technology, 2025, 14(4): 1394-1412.
1 | CHU H Q, YANG C H, ZHANG Z K, et al. Advances in resource utilization of waste in phase change materials[J]. Journal of Energy Storage, 2024, 99: 113342. DOI: 10.1016/j.est.2024. 113342. |
2 | WANG C, QI J S, YANG J N, et al. A facile strategy for enhancement of heat storage rate in LHS units[J]. Journal of Energy Storage, 2024, 90: 111821. DOI: 10.1016/j.est.2024. 111821. |
3 | HEDAU A, SINGAL S K. Heat transfer and fluid flow analysis of PCM-based thermal energy storage concept for double pass solar air heater[J]. International Communications in Heat and Mass Transfer, 2024, 157: 107813. DOI: 10.1016/j.icheatmasstransfer. 2024.107813. |
4 | YIN H, NOROUZIASAS A, HAMDY M. PCM as an energy flexibility asset: How design and operation can be optimized for heating in residential buildings?[J]. Energy and Buildings, 2024, 322: 114721. DOI: 10.1016/j.enbuild.2024.114721. |
5 | RAKSHAMUTHU S, JEGAN S, JOEL BENYAMEEN J, et al. Experimental analysis of small size solar dryer with phase change materials for food preservation[J]. Journal of Energy Storage, 2021, 33: 102095. DOI: 10.1016/j.est.2020.102095. |
6 | HUA W S, ZHANG L Y, ZHANG X L. Research on passive cooling of electronic chips based on PCM: A review[J]. Journal of Molecular Liquids, 2021, 340: 117183. DOI: 10.1016/j.molliq. 2021.117183. |
7 | VERMA A, RAKSHIT D. Performance analysis of PCM-fin combination for heat abatement of Li-ion battery pack in electric vehicles at high ambient temperature[J]. Thermal Science and Engineering Progress, 2022, 32: 101314. DOI: 10.1016/j.tsep. 2022.101314. |
8 | LIANG Y, YANG H B, WANG H L, et al. Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study[J]. Energy, 2024, 286: 129641. DOI: 10.1016/j.energy.2023.129641. |
9 | ZHAO Y, HUANG J X, SONG J, et al. Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores[J]. Energy, 2024, 296: 131148. DOI: 10.1016/j.energy.2024.131148. |
10 | GUO H, TIAN M C. Enhancing the charging performance of the latent heat storage unit by gradient straight fins[J]. International Communications in Heat and Mass Transfer, 2024, 154: 107391. DOI: 10.1016/j.icheatmasstransfer.2024.107391. |
11 | NEMATPOURKESHTELI A, IASIELLO M, LANGELLA G, et al. Using metal foam and nanoparticle additives with different fin shapes for PCM-based thermal storage in flat plate solar collectors[J]. Thermal Science and Engineering Progress, 2024, 52: 102690. DOI: 10.1016/j.tsep.2024.102690. |
12 | WAQAS H, HASAN M J, JI C H, et al. Melting performance of PCM with MoS2 and Fe3O4 nanoparticles using leaf-based fins with different orientations in a shell and tube-based TES system[J]. International Communications in Heat and Mass Transfer, 2024, 158: 107944. DOI: 10.1016/j.icheatmasstransfer.2024. 107944. |
13 | LIN X W, ZHANG X L, LIU L, et al. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management[J]. Journal of Cleaner Production, 2022, 331: 130014. DOI: 10.1016/j.jclepro. 2021.130014. |
14 | 陈久林. 管壳式相变蓄热器热性能分析及结构优化[J]. 热能动力工程, 2022, 37(7): 93-101. DOI: 10.16146/j.cnki.rndlgc.2022.07.013. |
CHEN J L. Thermal performance analysis and structural optimization of shell-and-tube phase change accumulator[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(7): 93-101. DOI: 10.16146/j.cnki.rndlgc.2022.07.013. | |
15 | HUANG Y P, CAO D C, SUN D K, et al. Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121920. DOI: 10. 1016/j.ijheatmasstransfer.2021.121920. |
16 | LIU J W, HU P F, LIU Z P, et al. Enhancement effect of T-shaped fins on phase change material melting in a horizontal shell-and-tube storage unit[J]. International Journal of Heat and Mass Transfer, 2023, 208: 124044. DOI: 10.1016/j.ijheatmasstransfer. 2023.124044. |
17 | TAVAKOLI A, FARZANEH-GORD M, EBRAHIMI-MOGHADAM A. Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses[J]. Renewable Energy, 2023, 205: 222-237. DOI: 10.1016/j.renene.2023.01.074. |
18 | ALY K A, EL-LATHY A R, FOUAD M A. Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins[J]. Journal of Energy Storage, 2019, 24: 100785. DOI: 10.1016/j.est.2019.100785. |
19 | PARSA N, KAMKARI B, ABOLGHASEMI H. Experimental study on the influence of shell geometry and tube eccentricity on phase change material melting in shell and tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125571. DOI: 10.1016/j.ijheatmasstransfer.2024.125571. |
20 | AO C, YAN S Y, HU W Q, et al. Heat transfer analysis of a PCM in shell-and-tube thermal energy storage unit with different V-shaped fin structures[J]. Applied Thermal Engineering, 2022, 216: 119079. DOI: 10.1016/j.applthermaleng.2022.119079. |
21 | YAN P L, FAN W J, YANG Y, et al. Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations[J]. Applied Energy, 2022, 327: 120064. DOI: 10.1016/j.apenergy.2022.120064. |
22 | SONG L P, WU S C, YU C, et al. Thermal performance analysis and enhancement of the multi-tube latent heat storage (MTLHS) unit[J]. Journal of Energy Storage, 2022, 46: 103812. DOI: 10.1016/j.est.2021.103812. |
23 | YAZICI M Y, AVCI M, AYDIN O, et al. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM[J]. Applied Thermal Engineering, 2014, 64(1/2): 1-9. DOI: 10. 1016/j.applthermaleng.2013.12.005. |
24 | ZHANG L D, ZHOU G B. Optimal eccentricity and exergy analyses of a horizontal double-tube latent heat storage unit for melting processes[J]. Journal of Energy Storage, 2024, 88: 111647. DOI: 10.1016/j.est.2024.111647. |
25 | LIU Y K, TAO Y B. Experimental and numerical investigation of longitudinal and annular finned latent heat thermal energy storage unit[J]. Solar Energy, 2022, 243: 410-420. DOI: 10.1016/j.solener.2022.08.023. |
26 | HOSSEINI M J, RANJBAR A A, SEDIGHI K, et al. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger[J]. International Communications in Heat and Mass Transfer, 2012, 39(9): 1416-1424. DOI: 10. 1016/j.icheatmasstransfer.2012.07.028. |
27 | 谭振炜, 李沐, 李传常. 相变储冷凝胶在管翅式储冷器中传热特性的研究[J]. 储能科学与技术, 2023, 12(12): 3740-3748. DOI: 10. 19799/j.cnki.2095-4239.2023.0682. |
TAN Z W, LI M, LI C C. Research on the heat transfer characteristics of phase change cold storage gels in tube and fin cold storage equipment[J]. Energy Storage Science and Technology, 2023, 12(12): 3740-3748. DOI: 10.19799/j.cnki.2095-4239.2023. 0682. | |
28 | WANG Z, WANG Y L, YANG L S, et al. Study on solidification characteristics of bionic finned phase change heat exchanger and multi-objective optimization design[J]. Journal of Energy Storage, 2024, 86: 111105. DOI: 10.1016/j.est.2024.111105. |
29 | HUANG Y P, LIU X D. Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins[J]. Renewable Energy, 2021, 174: 199-217. DOI: 10.1016/j.renene. 2021.04.066. |
30 | ZHENG J Y, WANG J, CHEN T T, et al. Solidification performance of heat exchanger with tree-shaped fins[J]. Renewable Energy, 2020, 150: 1098-1107. DOI: 10.1016/j.renene.2019.10.091. |
[1] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
[2] | Yixuan LIU, Xiaofen REN, Shanhu TONG, Zhiguo SHI, Xiaohui SHE. Cooling performance of air-cooled evaporator based on phase-change cold storage [J]. Energy Storage Science and Technology, 2025, 14(2): 505-514. |
[3] | Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol [J]. Energy Storage Science and Technology, 2025, 14(1): 124-139. |
[4] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[5] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[6] | Li ZHOU, Yan LIU. Application and development of alloy materials in energy storage technology [J]. Energy Storage Science and Technology, 2024, 13(6): 1874-1876. |
[7] | Jing BAI, Huifang FAN, Siqi CUI, Chuang XU, Yi ZHANG, Size GUAN, Hanfei YANG, Yifei JIA, Shuwei GENG, Huifan ZHENG. Experimental study on heat dissipation performance of automotive fuel cells [J]. Energy Storage Science and Technology, 2024, 13(2): 390-395. |
[8] | Peng NI, Shihao CAO. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. |
[9] | Feng LI, Yuanwei LU, Yanquan WANG, Yancheng MA, Yuting WU. Effect of airfoil structure on flow and heat transfer characteristics of printed circuit heat exchanger [J]. Energy Storage Science and Technology, 2024, 13(2): 416-424. |
[10] | Jianlong DAI, Guo LI, Yitong CAO, Zihan YANG, Zhiyuan XIA, Gongshuo ZHANG, Rui CHEN, Nan SHENG, Chunyu ZHU. Enhancing phase change heat storage performance of paraffin using porous metal foam [J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. |
[11] | Hailan WANG, Xiaoyu ZHANG, Jianhong GUO, Yong ZHAO, Zhuo CHEN, Yibo WANG. Numerical analysis of heat transfer performance in a shell-and-tube heat storage unit based using medium-low temperature phase change material [J]. Energy Storage Science and Technology, 2024, 13(10): 3376-3387. |
[12] | Jiangtian ZHU, Yuan ZHANG, Yibin LUO, Huiting YANG, Jie LI, Xiaoqin SUN. Optimization of 5G communication base station cabinet based on heat storage of phase change material [J]. Energy Storage Science and Technology, 2023, 12(9): 2789-2798. |
[13] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[14] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[15] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||