Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1386-1393.doi: 10.19799/j.cnki.2095-4239.2024.1057
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xinlong HAN1,2(), Yuanwei LU1,2(
), Yancheng MA1,2, Yuting WU1,2, Cancan ZHANG1,2
Received:
2024-11-12
Revised:
2024-12-10
Online:
2025-04-28
Published:
2025-05-20
Contact:
Yuanwei LU
E-mail:hxl20000818@163.com;luyuanwei@bjut.edu.cn
CLC Number:
Xinlong HAN, Yuanwei LU, Yancheng MA, Yuting WU, Cancan ZHANG. Research on the dynamic corrosion characteristics of ternary nitrocarbonate acid mixed molten salt at high decomposition temperatures[J]. Energy Storage Science and Technology, 2025, 14(4): 1386-1393.
1 | 邵桂萍, 许洪华. 可再生能源综合系统现状与未来发展趋势研究[J]. 太阳能, 2024(7): 127-132. DOI: 10.19911/j.1003-0417. tyn20240606.01. |
SHAO G P, XU H H. Research on present situation and future development trend of renewable energy integrated system[J]. Solar Energy, 2024(7): 127-132. DOI: 10.19911/j.1003-0417.tyn20240606.01. | |
2 | BAIGORRI J, ZAVERSKY F, ASTRAIN D. Massive grid-scale energy storage for next-generation concentrated solar power: A review of the potential emerging concepts[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113633. DOI: 10.1016/j.rser.2023.113633. |
3 | 刘文彬. 新能源将在国家新型能源体系建设中发挥关键作用[J]. 水电与新能源, 2023, 37(12): 75-78. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2023.12.018. |
LIU W B. New energy resources: Key roles in the construction of Chinese national new energy system[J]. Hydropower and New Energy, 2023, 37(12): 75-78. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2023.12.018. | |
4 | PAN G, DING J, YAO Y C, et al. Thermal performance of MgCl2-NaCl-KCl eutectic salt for the next generation concentrated solar power and correlation between structure and thermophysical properties: Insights from atomic and electronic levels[J]. Solar Energy Materials and Solar Cells, 2024, 276: 113091. DOI: 10. 1016/j.solmat.2024.113091. |
5 | KEARNEY D, KELLY B, HERRMANN U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J]. Energy, 2004, 29(5/6): 861-870. DOI: 10.1016/S0360-5442(03)00191-9. |
6 | 高祺. 宽温域混合熔盐高温腐蚀特性及缓蚀机理研究[D]. 北京: 北京工业大学, 2024. |
GAO Q. Research on high temperature corrosion characteristics and corrosion inhibition mechanism of mixed molten salts with wide temperature range[D]. Beijing: Beijing University of Technology, 2024. | |
7 | GAO Q, LU Y W, JIA J W, et al. Effect of nitrate-carbonate molten salt flow rate for the 347H corrosion behavior[J]. Journal of Physics: Conference Series, 2024, 2760: 012074. |
8 | 马丽娜. 高温熔盐腐蚀行为实验与理论研究[D]. 北京: 北京工业大学, 2022. |
MA L N. Experimental and theoretical study on corrosion behavior of high temperature molten salt[D]. Beijing:Beijing University of Technology, 2022. | |
9 | KRUIZENGA A M, GILL D, LAFORD M, et al. Corrosion of high temperature alloys in solar salt at 400, 500, and 680 ℃[R]. Albuquerque, Livermore: Sandia National Laboratories, 2013. |
10 | ZAMBONIN P G, DESIMONI E, PALMISANO F, et al. Concerning the electroactivity of hydrogen in nitrate melts: A critical discussion in the light of recent hypotheses and suggestions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 161(1): 31-38. DOI: 10.1016/S0022-0728(84)80247-8. |
11 | MA L N, ZHANG C C, WU Y T, et al. Dynamic corrosion behavior of 316L stainless steel in quaternary nitrate-nitrite salts under different flow rates[J]. Solar Energy Materials and Solar Cells, 2020, 218: 110821. DOI: 10.1016/j.solmat.2020.110821. |
12 | ZHANG X M, ZHANG C C, WU Y T, et al. Experimental research of high temperature dynamic corrosion characteristic of stainless steels in nitrate eutectic molten salt[J]. Solar Energy, 2020, 209: 618-627. DOI: 10.1016/j.solener.2020.09.034. |
13 | GARCÍA-MARTÍN G, LASANTA M I, ENCINAS-SÁNCHEZ V, et al. Evaluation of corrosion resistance of A516 Steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants[J]. Solar Energy Materials and Solar Cells, 2017, 161: 226-231. DOI: 10.1016/j.solmat.2016.12.002. |
14 | 马丽娜, 吴玉庭, 张灿灿, 等. 奥氏体不锈钢在四元硝酸盐中的动态腐蚀行为研究[J]. 太阳能学报, 2023, 44(3): 497-503. DOI: 10.19912/j.0254-0096.tynxb.2021-1286. |
MA L N, WU Y T, ZHANG C C, et al. Dynamic corrosion behaviors of autennitic stainless steel in quaternary nitrate-niotrite molten salt[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 497-503. DOI: 10.19912/j.0254-0096.tynxb.2021-1286. | |
15 | NISHIKATA A, NUMATA H, TSURU T. Electrochemistry of molten salt corrosion[J]. Materials Science and Engineering: A, 1991, 146(1/2): 15-31. DOI: 10.1016/0921-5093(91)90265-O. |
16 | BELL S, STEINBERG T, WILL G. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109328. DOI: 10.1016/j.rser.2019.109328. |
17 | LIU Q Y, QIAN J, NEVILLE A, et al. Solar thermal irradiation cycles and their influence on the corrosion behaviour of stainless steels with molten salt used in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112141. DOI: 10.1016/j.solmat.2022.112141. |
18 | 孙华, 张鹏, 王建强. 传热储热用熔融硝酸盐及其腐蚀问题[J]. 腐蚀科学与防护技术, 2017, 29(5): 567-574. DOI: 10.11903/1002. 6495.2016.258. |
SUN H, ZHANG P, WANG J Q. Corrosion problems related with molten nitrate salts for heat transfer and thermal storage[J]. Corrosion Science and Protection Technology, 2017, 29(5): 567-574. DOI: 10.11903/1002.6495.2016.258. |
[1] | Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470. |
[2] | Yongqi LI, Yun DU, Zhenhua FANG, Songtong ZHANG, Xiayu ZHU, Hailiang HU, Jingyi QIU, Hai MING. Review of the operation and fault handling analysis of new energy microgrid systems in military applications [J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757. |
[3] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[4] | Haifeng MA, Chunyan XU, Chuanbo ZHANG, Tong YU, Jian JIAO. The application of computer technology in the integrated smart energy design of wind, solar, and energy storage [J]. Energy Storage Science and Technology, 2024, 13(3): 946-948. |
[5] | Chao YU, Gechuanqi PAN. Molecular dynamics study on structure and thermal properties of high-performance chloride molten salt [J]. Energy Storage Science and Technology, 2024, 13(12): 4368-4380. |
[6] | Dalin WEI, Lin ZHU, Xiang LING, Feng JIANG. Research progress of MgCl2-NaCl-KCl molten salt for high-temperature heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4421-4435. |
[7] | Xi ZHAO. Research on smart energy design of wind and solar energy storage integration in the context of Internet plus [J]. Energy Storage Science and Technology, 2024, 13(10): 3566-3568. |
[8] | Heqing TIAN, Zhaoyang KOU, Junjie ZHOU, Yinsheng YU. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids [J]. Energy Storage Science and Technology, 2023, 12(3): 654-660. |
[9] | Yalei ZHANG, Haiting CUI, Chen WANG, Haosong CHEN, Chao WANG. Research on a phase-change storage heating system of a solar-ground source heat pump based on low current [J]. Energy Storage Science and Technology, 2023, 12(12): 3789-3798. |
[10] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[11] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
[12] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[13] | Dianwei FU, Cancan ZHANG, Heya NA, Guoqiang WANG, Yuting WU, Yuanwei LU. Review of the molecular dynamics of molten salt thermal physical properties [J]. Energy Storage Science and Technology, 2023, 12(12): 3873-3882. |
[14] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[15] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||