Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2853-2864.doi: 10.19799/j.cnki.2095-4239.2025.0237
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Yiming CHEN1,2(), Haoshu LING2,4,5, Meng LIU3, Yujie XU2,4,5(
), Guoqing SHEN1(
), Yun JIA2,4,5, Haisheng CHEN2,4,5
Received:
2025-03-24
Revised:
2025-04-02
Online:
2025-07-28
Published:
2025-07-11
Contact:
Yujie XU, Guoqing SHEN
E-mail:cym898730398@163.com;xuyujie@iet.cn;shenguoqing@ncepu.edu.cn
CLC Number:
Yiming CHEN, Haoshu LING, Meng LIU, Yujie XU, Guoqing SHEN, Yun JIA, Haisheng CHEN. Preparation and performance study of zeolite/hydrated salt adsorption heat storage materials[J]. Energy Storage Science and Technology, 2025, 14(7): 2853-2864.
[1] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[2] | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022,11(9): 2746-2771. |
JIANG Z, ZOU B, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
[3] | YAN T, LI T X, WANG R Z. 18 Thermochemical heat storage for solar heating and cooling systems[J]. Advances in Solar Heating and Cooling, 2016: 491-522. DOI: 10.1016/B978-0-08-100301-5.00018-7. |
[4] | 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124. |
YAN T, WANG W H, WANG R Z. Present status and progress of research on chemical adsorption heat storage[J]. Materials Review, 2018, 32(23): 4107-4115, 4124. | |
[5] | 葛志伟, 叶锋, LASFARGUES Mathieu, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102. |
GE Z W, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102. | |
[6] | ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. DOI: 10.1016/j.energy.2017.12.037. |
[7] | LEE D, KANG C. A study on development of the thermal storage type plate heat exchanger including PCM layer[J]. Journal of Mechanical Science and Technology, 2019, 33(12): 6085-6093. DOI: 10.1007/s12206-019-1152-x. |
[8] | SUN V, ASANAKHAM A, DEETHAYAT T, et al. Increase of power generation from solar cell module by controlling its module temperature with phase change material[J]. Journal of Mechanical Science and Technology, 2020, 34(6): 2609-2618. DOI: 10.1007/s12206-020-0336-8. |
[9] | CAO N V, DUONG X Q, LEE W S, et al. Effect of heat exchanger materials on the performance of adsorption chiller[J]. Journal of Mechanical Science and Technology, 2020, 34(5): 2217-2223. DOI: 10.1007/s12206-020-0443-6. |
[10] | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. DOI: 10.1016/j.pecs.2013.05.004. |
[11] | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610. |
WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: A critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. | |
[12] | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245. |
WU J, LONG X F. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245. | |
[13] | LAI Z Y, DING L W, LYU H K, et al. Experimental study on energy storage characteristics of sintered ore particle packed beds[J]. Journal of Thermal Science, 2025, 34(1): 242-253. DOI: 10.1007/s11630-024-2079-9. |
[14] | 陈佳丽, 赵国祥, 颜亚玉, 等. 机器学习探究电子气体在沸石分子筛上的吸附[J]. 无机化学学报, 2025, 41(1): 155-164. |
CHEN J L, ZHAO G X, YAN Y Y, et al. Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. | |
[15] | WU Q M, LUAN H M, XIAO F S. Targeted synthesis of zeolites from calculated interaction between zeolite structure and organic templateOpen Access[J]. National Science Review, 2022, 9(9): nwac023. DOI: 10.1093/nsr/nwac023. |
[16] | 杨慧, 童莉葛, 尹少武, 等. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162. |
YANG H, TONG L G, YIN S W, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162. | |
[17] | 张敏, 卢允庄, 王如竹. 沸石分子筛水吸附工质对的吸附性能及导热性能[J]. 太阳能学报, 2003, 24(1): 37-40. |
ZHANG M, LU Y Z, WANG R Z. Experimental study on the adsorption and heat transfer performance of zeolite-water working pair[J]. Acta Energiae Solaris Sinica, 2003, 24(1): 37-40. | |
[18] | 白峰, 马鸿文. 13X沸石分子筛的比表面积和孔分布[J]. 现代地质, 2008, 22(5): 838-844. |
BAI F, MA H W. Specific surface area and pore size distribution of 13X zeolite molecular sieves[J]. Geoscience, 2008, 22(5): 838-844. | |
[19] | SAYıLGAN Ş Ç, MOBEDI M, ÜLKÜ S. Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13x-water pair[J]. Microporous and Mesoporous Materials, 2016, 224: 9-16. DOI: 10.1016/j.micromeso.2015.10.041. |
[20] | 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772, 2330. |
LI W, WANG Q W, ZENG M. Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature[J]. CIESC Journal, 2021, 72(5): 2763-2772, 2330. | |
[21] | ZONDAG H, KIKKERT B, SMEDING S, et al. Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109: 360-365. DOI: 10.1016/j.apenergy. 2013.01.082. |
[22] | WHITING G T, GRONDIN D, STOSIC D, et al. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials and Solar Cells, 2014, 128: 289-295. DOI: 10.1016/j.solmat.2014.05.016. |
[23] | WHITING G, GRONDIN D, BENNICI S, et al. Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2013, 112: 112-119. DOI: 10.1016/j.solmat. 2013.01.020. |
[24] | XU C, YU Z B, XIE Y Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259. DOI: 10.1016/j.applthermaleng.2017.10.031. |
[25] | N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. DOI: 10.1016/j.apenergy.2014.02.053. |
[26] | 张红. 沸石/硫酸镁复合吸附蓄热材料的制备及性能研究[D]. 上海: 上海电力大学, 2023. DOI: 10.27745/d.cnki.gshdl.2023.000013. |
ZHANG H. Study on preparation and performance of zeolite/magnesium sulfate composite sorption heat storage materials[D]. Shanghai: Shanghai University of Electric Power, 2023. DOI: 10.27745/d.cnki.gshdl.2023.000013. | |
[27] | 谢云云. 基于水合盐复合材料的热化学储热性能实验和数值研究[D]. 北京: 华北电力大学, 2018. |
XIE Y Y. Experiment and numerical study on the thermochemical heat storage based on hydrate composite materials[D]. Beijing: North China Electric Power University, 2018. | |
[28] | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. DOI: 10.1016/j.energy.2019.07.076. |
[1] | Liming WANG, Mengqi WANG, Yimo LUO, Gesang YANG, Yuanyuan WANG, Lexiao WANG. Optimum design method for zeolite heat storage reactors [J]. Energy Storage Science and Technology, 2024, 13(12): 4272-4281. |
[2] | Xueling ZHANG, Qiang YE, Junheng GU, Haoyun XUN, Qi ZHANG, Chuanxiao CHENG, Tingxiang JIN, Yeqiang ZHANG. Preparation and adsorption heat storageperformance study of MgSO4-LiCl@MEG composite heat storage materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2778-2788. |
[3] | Weibin HUANG, Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Preparation and modification of ZIF-8 composite PEO based solid electrolyte [J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. |
[4] | Xiaohua DENG, Zhu JANG, Chao CHEN, Dai DANG. Recent advances in zeolitic imidazolium-based metal-organic frameworks (ZIFs) and their derivatives as efficient cathode catalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 964-981. |
[5] | Xiaofei WANG, Dawei LAN, Daoming ZHANG, Haoliang XUE, Sifei ZHOU, Chuang LIU, Jun LI, Zhendong WANG. High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite [J]. Energy Storage Science and Technology, 2022, 11(11): 3447-3454. |
[6] | Youqiang LINGHU, Dehou XU, Xiuyan YUE, Xuezhi ZHOU, Yujie XU, Yong SHENG, Zhitao ZUO, Haisheng CHEN. Study on characteristics of the discharge process for zeolite-liquid water adsorption heat storage system [J]. Energy Storage Science and Technology, 2021, 10(3): 1103-1108. |
[7] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
[8] | WAN Qian, XIAO Haonan, QIAN Jing, HE Zhengbin, YI Songlin. Influence of iron foam on paraffin phase change heat storage process [J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||